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1. Introduction

String backgrounds which include non-trivial fluxes and are described by generalized ge-

ometry have been of considerable interest recently [1]. The primary reason is that such

generalized compactifications are necessary whenever the string background contains D-

branes . Generalized geometries have also featured prominently in recent mathematical

investigations since they provide interesting extensions of certain established geometrical

concepts such as complex and symplectic geometry [2]–[10].

A particular aspect of generalized geometries is that they can appear as mirror partners

of Calabi-Yau compactifications with background fluxes [11]–[16] or as non-perturbative
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duals of heterotic flux compactifications [17]. More specifically, if one considers type IIB

supergravity compactified on Calabi-Yau threefolds one can turn on non-trivial three-form

flux for both the Ramond-Ramond (RR) three-form F3 and the Neveu-Schwarz (NS) three-

form H3. In the mirror symmetric type IIA background the RR three-form flux is mapped

to RR-flux of the even field strength F+ = F0 + F2 + F4 + F6 [18, 19]. On the other

hand the NS three-form flux becomes part of the geometry in the mirror dual compactifi-

cation [20, 11]. More precisely, a Calabi-Yau compactification with electric NS three-form

flux is conjectured to be mirror symmetric to compactifications on manifolds known as

“half-flat manifolds” [3, 7, 11].1 These six-dimensional manifolds are a specific subclass

of manifolds with SU (3) structure. A generic manifold with SU (3) structure admits a

nowhere vanishing, globally defined spinor η which, however, is not necessarily covariantly

constant with respect to the Levi-Civita connection. In this sense manifolds with SU (3)

structure generalize the notion of Calabi-Yau manifolds.2

The mirror of Calabi-Yau compactifications with magnetic three-form fluxes turns

out to be more involved. The types of gaugings arising in such compactifications were

discussed in [22]. In refs. [23 – 25] it has been suggested that the corresponding mirror

backgrounds do not correspond to conventional geometric compactifications. Such non-

geometrical backgrounds have been studied from different points of view in refs. [23]–

[44]. In ref. [45] we conjectured that the mirror of the magnetic fluxes is found among

compactifications on manifolds with SU (3)×SU (3) structure [8, 46, 47]. Such manifolds are

generalizations of manifolds with SU (3) structure in that they admit two globally defined

spinors, one for each of the two original ten-dimensional supersymmetries. Recently the

relationship between these different proposals has been clarified in ref. [42]. For N = 1

orientifold compactification our proposal for mirror symmetry was indeed confirmed in

ref. [48]. Mirror symmetry can also be discussed in terms of brane configurations, which

in this context are naturally described by calibrations in generalised geometry [8, 49].

In ref. [45] we showed that compactifications on manifolds with SU (3)× SU (3) struc-

ture are the most general geometric compactifications of type II supergravities with eight

unbroken supercharges or, from a four-dimensional point of view, with N = 2 supersym-

metry. The corresponding low-energy effective action depends only on the light modes of

the string while the heavy string- and Kaluza-Klein excitations are integrated out. The

couplings of this action are strongly constrained by the unbroken N = 2 supersymmetry

which leads to an intricate interplay between supersymmetry and geometry. For general-

ized compactifications the distinction between heavy and light modes is not straightforward

and as a consequence the definition of the effective action is somewhat ambiguous. In [45]

we showed that even without any Kaluza-Klein truncation it is possible to rewrite the ten-

dimensional effective action in a background with SU (3)-structure in a form which linearly

1The notion of electric flux is related to the definition of the Abelian (electric) gauge bosons. In type

IIB they arise from expanding the RR four-form C4 in terms of elements of the third cohomology H3 of the

Calabi-Yau. On H3 there is a natural symplectic structure which in physical terms can be used to define

electric gauge bosons and their magnetic duals. With this definition in mind one also has a natural split of

the NS three-form flux into electric and magnetic. (See [19, 11] for further details.)
2In the context of string theory such manifolds were first discussed in [21].
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realizes the eight unbroken supersymmetries. Or in other words we defined the equivalent

of the standard N = 2 couplings, that is the holomorphic prepotential and the Killing

prepotentials, but now in ten dimensions and showed that they do obey the constraints

of N = 2 supersymmetry. From a four-dimensional point of view this action contains an

infinite number of modes and a Kaluza-Klein reduction then corresponds to a consistent

truncation to a finite subspace.

The purpose of this paper is to fill in two missing elements of our earlier work. We

first reanalyze part of the reformulation of ten-dimensional type II supergravity in terms of

Hitchin’s generalized geometrical structures given in [45]. Specifically we derive the form

of the Killing prepotentials (the N = 2 analogue of the superpotential and D-terms) in the

case of a generic SU (3) × SU (3) structure, verifying the expressions conjectured in [45].

We then discuss the truncation to a finite set of modes, leading to a conventional four-

dimensional effective theory. In this paper we do not address directly the question of when

such truncations exist, but simply derive a set of consistency conditions for the effective

theory to be N = 2 supersymmetric. (These issues are discussed in detail in [50].) Given

such a truncation, we identify the backgrounds mirror to a Calabi-Yau compactification

with magnetic H-flux, the case which was missing from the analysis of [11]. We then use

existing work to argue that generically these are in fact non-geometrical. Nonetheless, the

corresponding low-energy effective theories can be derived from the general SU (3)×SU (3)

structure expressions, given some suitable truncation, despite the fact that these were

derived assuming there was a geometrical compactification. This is consistent with the

fact that at least some of the non-geometrical backgrounds are geometrical on any local

patch.

The structure of the paper is as follows. In section 2 we review the geometry of

generalized structures and show how they can be used to rewrite type II sypergravity in

a form analogous to d = 4, N = 2 supergravity. In section 3, we show in detail how the

spectrum of the supergravity fluctuations can be arranged into N = 2 — like multiplets

and in addition, what representations need to be projected out in order to define a theory

without additional spin-3
2 multiplets. In section 4 we derive the analogs of the Killing

prepotentials for the generic theory, verifying the form conjectured in [45]. In section 5

we show that one can identify a specific SU (3) × SU (3) structure with an appropriate

mode expansion of the supergravity fields which reproduces the mirror dual low-energy

effective theory of Calabi-Yau compactifications with magnetic H-flux. In section 6 we

consider generic SU (3) × SU (3) structures and compute the Killing prepotentials of the

corresponding compactified type IIA and type IIB theories. They turn out to be manifestly

mirror symmetric and all known compactifications can be obtained from them as special

cases.3 In section 7 we take up the issue of non-geometric compactifications and show

that backgrounds with SU (3) × SU (3) structure generically also contain non-geometric

backgrounds. Finally, section 8 concludes with some open problems. Our conventions for

Spin(6) and Spin(6, 6) spinors are given in appendix A while the conditions for a consistent

mode truncation are spelled out in appendix B.

3A specific set of generalized mirror manifolds has been constructed in [51].
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2. Supergravity and SU (3) × SU (3) structures

We begin by briefly reviewing the reformulation of ten-dimensional type II supergravities

given in [45] and some of the key ingredients of generalized geometry in six dimensions.

Recall that supersymmetry variations in type II supergravity are given by a pair of ten-

dimensional spinors (ǫ1, ǫ2). In the reformulation, we concentrate on an eight-dimensional

subset of supersymmetries, analogous to the eight supersymmetries of N = 2 supergravity

in four (d = 4) space-time dimensions. Since there are no eight-dimensional representations

of Spin(9, 1), this rewriting necessarily no longer has manifest ten-dimensional Lorentz

symmetry, but, as we will see, the bosonic fields can actually be arranged in terms of

O(6, 6) representations which are the natural objects describing generalized geometry.

Specifically, decomposing Spin(9, 1) into Spin(3, 1) × Spin(6) subgroups we identify

eight supersymmetry parameters given by

ǫ1 = ε1
+ ⊗ η1

− + ε1
− ⊗ η1

+ ,

ǫ2 = ε2
+ ⊗ η2

± + ε2
− ⊗ η2

∓ ,
(2.1)

where in the second line we take the upper sign for type IIA and the lower for type IIB.

Here ηA
+ with A = 1, 2 are spinors of Spin(6) while εA are Weyl spinors of Spin(3, 1). In

each case ηA
− and εA

− are the charge conjugate spinors and the ± subscripts denote the

chirality (for more details see appendix A). For a given pair (η1
+, η2

+) we have eight spinors

parametrized by εA
±. These are the eight supersymmetries which remain manifest in the

reformulated theory.

The assumption that we can identify ηA
+ globally puts a topological constraint on the

ten-dimensional spacetime: it must admit a pair of SU (3) structures, one for each spinor.

The tangent bundle must split according to TM9,1 = T 3,1 ⊕ F , where F admits a pair

of nowhere vanishing spinors. A simple example of such a split is a space-time which is

a product M9,1 = M3,1 × M6 (with M6 admiting two such spinors) but the background

under consideration can also be more general. The split of the tanget space implies that

all fields of the theory can be decomposed under Spin(3, 1) × Spin(6).

The two spinors ηA
+ are not necessarily different. If they coincide on the whole manifold,

the two SU (3) structures are the same, and the manifold has a single SU (3) structure. In

neighborhoods where the spinors are not parallel, two real vectors v and v′ can be defined

by the bilinear vm − iv′m := η̄1
+γmη2

−. If the spinors never coincide, this complex vector is

nowhere vanishing, and the two SU (3) structures intersect globally in an SU (2) structure.

Instead of defining a general SU (3) structure via the spinor η one can equivalently

define it by a real fundamental two-form J and a complex three-form Ω. Analogously, a

pair of SU (3) structures can be defined by a pair (JA,ΩA) which locally (in neighborhoods

where the two structures do not coincide) can be given as [52]

J1 = j + v ∧ v′ , Ω1 = ω ∧ (v + iv′) ,

J2 = j − v ∧ v′ , Ω2 = ω ∧ (v − iv′) .
(2.2)
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v, v′ are one-forms, j is a real two-form and ω is a complex two-form. Together (j, ω, v, v′)

define a local SU (2) structure on F , if none of them has zeros they define a global SU (2)

structure.

Crucially, one finds, following Hitchin [4, 8, 46], that the pair of SU (3) structures is

actually better viewed as an SU (3) × SU (3) structure on the generalized tangent bundle,

that is F ⊕ F ∗. In turn, this structure is defined by a pair of O(6, 6) spinors. As a

consequence, the bosonic supergravity fields can then all be written in terms of O(6, 6)

representations. To briefly see how this works, let us start by recalling some facts about

generalized geometry in six dimensions.

There is a natural O(6, 6) metric on F ⊕ F ∗ given by

(V, V ′) = ixξ′ + ix′ξ. (2.3)

where V = x + ξ, V ′ = x′ + ξ′ ∈ F ⊕ F ∗. In a coordinate basis the metric reads

G =

(

0 I6

I6 0

)

. (2.4)

Given this metric one can define O(6, 6) spinors. These are discussed in detail in the

appendix A, here we will summarize some key points. It turns out that the spinor bundle

S is isomorphic to the bundle of forms

S ≃ Λ∗F ∗ . (2.5)

Spinors of O(6, 6) can be chosen to be Majorana –Weyl. The positive and negative helicity

spin bundles S± are isomorphic to the bundles of even and odd forms Λeven/oddF ∗. The

Clifford action on χ ∈ Λ∗F ∗ is given by

(x + ξ) · χ = ixχ + ξ ∧ χ . (2.6)

The isomorphism (2.5) is not unique but is given by a choice of volume form ǫ (though is

independent of the sign of ǫ).4 If χ ∈ Λ∗F ∗ we write χǫ ∈ S for the corresponding spinor.

The usual spinor bilinear form ψt
ǫ · χǫ on S is then related to the Mukai pairing

〈

·, ·
〉

on

forms by

(ψt
ǫ · χǫ) ǫ =

〈

ψ,χ
〉

=
∑

p

(−)[(p+1)/2]ψp ∧ χ6−p , (2.7)

where the subscripts denote the degree of the component forms in Λ∗F ∗ and [(p + 1)/2]

takes the integer part of (p + 1)/2.

A metric g and B-field on F naturally define an O(6) × O(6) subgroup of O(6, 6) and

hence a decomposition of S into Spin(6)-bundles S = S1 ⊗ S2. The two Spin(6)-spinors

η1
± and η2

± defined in (2.1) are naturally sections of S1 and S2 respectively. In terms of the

diagonal Spin(6) group under which we identify S1 ≃ S2, we can view χǫ ∈ S as a Spin(6)

bispinor, that is, as an element of Cliff(6, 0; R). Explicitly one can write real χ±
ǫ ∈ S± as

χ±
ǫ = ζ+ζ̄ ′± ± ζ−ζ̄ ′∓ , (2.8)

4We are using the same symbol ǫ to denote the volume form and the ten-dimensional spinors. The

distinction between the two should hopefully be clear given the context.
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where ζ+, ζ ′+ are ordinary Spin(6) spinors and elements of S+
1 and S+

2 respectively. From

this perspective χ±
ǫ is a matrix. In fact it can be expanded as

χ±
ǫ =

∑

p

1

8p!
χ±

m1...mp
γm1...mp , (2.9)

with

χ±
m1...mp

= tr(χ±γmp...m1) ∈ ΛpF, (2.10)

and where γm are Spin(6) gamma-matrices and the trace is over the Spin(6) indices. For

χ+
ǫ only the even forms are non-zero, while for χ−

ǫ the odd forms are non-zero. This gives

an explicit realisation of the isomorphism between S± and Λeven/oddF ∗ using the volume

form ǫg compatible with the metric g.

Explicitly the O(6, 6) Clifford action (2.6) is realised in terms of commutators and

anticommutators

(x + ξ) · χ±
ǫ = 1

2 [xmγm, χ±
ǫ ]∓ + 1

2 [ξmγm, χ±
ǫ ]± . (2.11)

Similarly the Mukai pairing is given by

〈

ψ,χ
〉

= −8 tr(ψt
ǫχǫ)ǫg . (2.12)

where

ψt
ǫ := γ(6)CψT

ǫ C−1 , (2.13)

with γ(6) = 1
6!ǫ

m1...m6
g γm1...m6 and ǫg is the natural orientation compatible with the metric

g (defined up to an arbitrary sign). (See appendix A for more details.)

Now consider the pair of complex O(6, 6) spinors

Φ+ = e−BΦ+
0 := e−Bη1

+η̄2
+ ,

Φ− = e−BΦ−
0 := e−Bη1

+η̄2
− ,

(2.14)

where B is the NS two-form on F and e−B acts by wedge product. First one notes that

when B is non-trivial, Φ± are actually not quite sections of S±. Instead one must consider

the extension E

0 −→ F ∗ −→ E −→ F −→ 0 , (2.15)

defined as follows. If on the overlap of two patches Uα ∩ Uβ the B-field is patched by

Bα = Bβ + dAαβ (2.16)

then in the extension (2.15) we must identify

xα + ξα = xβ +
(

ξβ + ixβ
dAαβ

)

. (2.17)

Since ixαξα = ixβ
ξβ, the O(d, d) metric can still be defined on the extension E and thus

one can define spinor bundles S±(E) and hence Φ± ∈ S±(E).

In order to introduce the notion of pure spinors we need to define the anihilator space

LΦ of an O(6, 6) spinor as

LΦ = {V ∈ E : V · Φ = 0} . (2.18)
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A spinor is called pure whenever its annihilator space is maximal isotropic, that is LΦ is

six-dimensional, and ∀V, V ′ ∈ LΦ, (V, V ′) = 0 holds. A pure spinor Φ therefore induces a

decomposition E = LΦ + L̄Φ. The complex O(6, 6) spinors Φ± defined in (2.14) are pure

spinors.

Individually Φ± each defines an SU (3, 3) structure on E. Provided these structures are

compatible, together they define a common SU (3)×SU (3) structure. The requirements of

compatibility are that dim(LΦ+ ∩LΦ−) = 3, and that Φ± have the same normalization [8].

In terms of Mukai pairings, they read [45]

〈

Φ+, V · Φ−
〉

=
〈

Φ̄+, V · Φ−
〉

= 0 ∀V ∈ E , (2.19)
〈

Φ+, Φ̄+
〉

=
〈

Φ−, Φ̄−
〉

. (2.20)

If Φ± are built out of Spin(6) spinors in the form of eq. (2.14), they are automatically

compatible [47]. The pair Φ± in (2.14) therefore defines an SU (3) × SU (3) structure on

E. In particular, one can see that they are invariant under independent SU (3) groups

acting on η1 and η2. Note that in terms of the local SU (2) structure (2.2) they are given

by [46, 47]

Φ+ =
1

8
e−B

(

c̄‖ e−ij − ic̄⊥ω
)

∧ e−iv∧v′ ,

Φ− = −1

8
e−B

(

c⊥e−ij + ic‖ ω
)

∧ (v + iv′) ,

(2.21)

where c‖, c⊥ are complex functions satisfying |c‖|2 + |c⊥|2 = 1. c‖ (c⊥) vanishes when

the two spinors η1,2 are orthogonal (parallel), namely η2
+ = c‖ η1

+ + c⊥(v + iv′)mγmη1
−.

At the points where the spinors are parallell (c⊥ = 0), the expression (2.21) should be

understood as Φ+ = 1
8 e−B e−iJ , Φ− = − i

8 e−B Ω, where J and Ω are the two- and three-

form of the single SU(3) structure defined by the coinciding spinors. In this case, Φ+

defines a symplectic structure, and Φ− a complex structure. Complex and symplectic

structures are particular cases of generalized complex structures. In this situation the

compatibility conditions (2.19) imply the familiar requirements J ∧Ω = 0, B ∧Ω = 0 while

the normalization condition (2.20) implies J ∧ J ∧ J = 3
4 iΩ ∧ Ω̄. In the general case, Φ−

contains not only a 3-form, but also a 1 and a 5-form, and defines a generalized complex

structure that is not purely complex but is a mixture of complex and symplectic structures.

One key point in connecting these generalised geometrical structures to supergravity,

is that, following Hitchin [2]–[4], one can show that there is a natural special Kähler

structure on the space of pure spinors at a point. Furthermore, this structure precisely

gives the metric for the “four-dimensional” kinetic terms in the reformulation of type II

supergravity in a N = 2 four-dimensional-type form [45]. This structure is reviewed in the

appendix B. The second key point is that the prepotentials, which describe the potential

terms and gaugings of the N = 2 theory, are also naturally defined in terms of generalised

geometrical structures. This is discussed in section 4.

Here, let us first briefly summarize the special Kähler structure. Working at a fixed

point in the manifold, one starts with a real stable Spin(6, 6) spinor, or its associated form

χ±. Such form is stable if it lies in an open orbit of Spin(6, 6). One can construct a

Spin(6, 6) invariant six-form, known as the Hitchin function H(χ±), which is homogeneous
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of degree two as a function of χ±. One can get a second real form by derivation of the

Hitchin function: χ̂±(χ) := −∂H(χ±)/∂χ±. This form χ̂± has the same parity as χ±,

and can be used to define the complex spinors Φ± = χ± + iχ̂±. Hitchin showed that the

complex spinors built in this form are pure. Since H is homogeneous of degree two in χ±,

we have

H(Φ±) =
1

2

〈

χ±, χ̂±
〉

= i
〈

Φ±, Φ̄±
〉

. (2.22)

There is a symplectic structure on the space of stable spinors given by the Mukai pairing and

a complex structure corresponding to the complex spinor Φ±. Both complex and symplectic

structures are integrable, and therefore the space of stable forms (or pure spinors) is Kähler,

or rather it is rigid special Kähler (for more details, see appendix B). Quotenting this space

by the C
∗ action Φ± → λΦ± for λ ∈ C

∗ (i.e., modding out by rescalings of the pure spinor),

gives a space with a the Kähler potential K is related to the Hitchin function by

e−K±

= H(Φ±) = i
〈

Φ±, Φ̄±
〉

, (2.23)

which defines a local special Kähler metric.

For a single SU(3) structure, i.e. for Φ+ = 1
8e−(B+iJ), Φ− = − i

8e−BΩ, the Kähler

potentials (2.23) are given respectively by the familiar expressions

e−K+
= 1

48J ∧ J ∧ J, e−K−

= i
64Ω ∧ Ω̄. (2.24)

Note that B drops from these expressions (which is easy to see since
〈

e−Bψ, e−Bχ
〉

=
〈

ψ, eBe−Bχ
〉

=
〈

χ,ψ
〉

).

In the following it will be useful to have a decomposition of O(6, 6) spinors under the

SU (3)×SU (3) subgroup defined by Φ+ and Φ−. From (2.8) the decomposition of a positive

chirality spinor under Spin(6) × Spin(6) is given by

32+ = (4,4) + (4̄, 4̄) . (2.25)

Under each SU (3) subgroup of Spin(6) we have 4 = 1 + 3. Hence under SU (3) × SU (3),

the O(6, 6) spinor decomposes into 8 different representations. A similar decomposition

of a negative chirality O(6, 6) spinor gives eight further representations. Denoting by Ur,s

the set of forms transforming in the (r, s) representation of SU (3)× SU (3) together these

decompositions can be arranged in a diamond as given in table 1 [53].5

U1,1̄ contains a sum of even forms while U3̄,1̄ and U1,3 contain a sum of odd forms.

Similarly, third row consists of even forms, the forth of odd forms and so on. Note that,

unlike the decomposition of forms induced by a complex structure into (p, q)-forms, the

elements of Ur,s are not necessarily of fixed degree. Instead Ur,s contains forms of mixed

degree which however are always even or odd. For example, for a single SU (3) structure on

F (which is a particular case of an SU (3) × SU (3) structure on E), a form belongs to the

space U1,1̄ if it is a multiple of e−(B+iJ). Thus it indeed contains all even 0-, 2-, 4- and 6-

form. Conversely forms of fixed degree are linear combinations of elements in different U ’s.

For example, a zero-form is a linear combination of elements in U1,1̄ ⊕ U1̄,1 ⊕ U3,3̄ ⊕ U3̄,3.

5By an abuse of notation, it is convenient to use 1̄ to denote the singlet coming from the decomposition

of 4̄.
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U1,1̄

U3̄,1̄ U1,3

U3,1̄ U3̄,3 U1,3̄

U1̄,1̄ U3,3 U3̄,3̄ U1,1

U1̄,3 U3,3̄ U3̄,1

U1̄,3̄ U3,1

U1̄,1

Table 1: Generalized SU (3) × SU (3) diamond.

3. Field decompositions and spectrum

In this section we discuss the group-theoretical properties of the massless type II supergrav-

ities fields in a background with a generalized tanget bundle T 3,1 ⊕ F ⊕ F ∗. In particular

we show how the fields assemble in N = 2 — like multiplets.

If F ⊕ F ∗ admits an SU (3) × SU (3) structure all ten-dimensional fields can be de-

composed under Spin(3, 1) × SU (3) × SU(3). In fact it is slightly simpler to first go to

light-cone gauge and discuss the decompostion under SO(2) × SU (3) × SU (3) instead.

In order to do so let us first recall the decomposition of the two 8-dimensional inequiva-

lent Majorana-Weyl representations 8S and 8C and the vector representation 8V of SO(8)

under SO(8) → SO(2) × SO(6) → SO(2) × SU (3). One has [54]

8S → 41

2

⊕ 4̄−1

2

→ 11

2

⊕ 1−1

2

⊕ 31

2

⊕ 3̄−1

2

,

8C → 4−1

2

⊕ 4̄1

2

→ 11

2

⊕ 1−1

2

⊕ 3−1

2

⊕ 3̄1

2

,

8V → 11 ⊕ 1−1 ⊕ 60 → 11 ⊕ 1−1 ⊕ 30 ⊕ 3̄0 .

(3.1)

where the subscript denotes the helicity of SO(2).

Let us start with the decomposition of the fermions which arise in the (NS,R) and

(R,NS) sector. More precisly, in type IIA the two gravitinos together with the two dilatinos

are in the (8S,8V) and (8V,8C) of SO(8)L × SO(8)R while in type IIB they come in the

(8S,8V) and (8V,8S) representations. The decomposition of these representations under

SO(8)L × SO(8)R → SO(2) × SU (3)L × SU (3)R yields6

(8S,8V) → (1,1)±3

2
,±1

2

⊕ (3,1)3

2
,−1

2

⊕ (3̄,1)−3

2
, 1
2

⊕ (1,3)±1

2

⊕ (1, 3̄)±1

2

⊕ (3,3)1

2

⊕ (3̄,3)−1

2

⊕ (3, 3̄)1

2

⊕ (3̄, 3̄)−1

2

,

(8V,8S) → (1,1)±3

2
,±1

2

⊕ (3,1)±1

2

⊕ (3̄,1)±1

2

⊕ (1,3)3

2
,−1

2

⊕ (1, 3̄)−3

2
, 1
2

⊕ (3,3)1

2

⊕ (3̄,3)1

2

⊕ (3, 3̄)−1

2

⊕ (3̄, 3̄)−1

2

,

(8V,8C) → (1,1)±3

2
,±1

2

⊕ (3,1)±1

2

⊕ (3̄,1)±1

2

⊕ (1,3)−3

2
, 1
2

⊕ (1, 3̄)3

2
,−1

2

⊕ (3,3)−1

2

⊕ (3̄,3)−1

2

⊕ (3, 3̄)1

2

⊕ (3̄, 3̄)1

2

.

(3.2)

6The SO(2) factor in the decomposition of SO(8)L and SO(8)R is of course the same.
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Exactly as we did in ref. [45] we do not consider the most general N = 2 — like

supergravity but only keep two gravitinos in the gravitational multiplet and project out

all other (possibly massive) spin-3
2 multiplets. This ensures a ‘standard’ N=2 theory with

only the gravitational multiplet plus possibly vector, tensor and hypermultiplets. In this

case the couplings in the low energy effective action are well known and highly constrained

by the N = 2 supersymmetry.

From (3.2) we learn that keeping only the two gravitinos of the gravitational multiplet

is insured if all representations of the form (3,1), (3̄,1), (1,3), (1, 3̄) are projected out.

In terms of the representations in the diamond in table 1, this amounts to keeping only

the elements in the horizontal and vertical axes. This is the analogue of projecting out

all triplets in the case of a single SU (3) structure as we did in ref. [45]. In that case it

also removed all O(6) vectors (or equivalently all one-forms) from the spectrum. For a

generalized SU (3) × SU (3) structure we are lead to project out the vectors of O(6, 6),

which decompose under SU (3) × SU (3) precisely as 12 → (3,1) ⊕ (3̄,1) ⊕ (1,3) ⊕ (1, 3̄).

Note that projecting out O(6, 6) vectors does not imply projecting out all O(6) vectors. For

a generic SU (3)×SU (3) structure, there are O(6) vectors (or equivalently one forms) that

remain in the spectrum, as for example those contained in U1,1. Whenever the structure

is not a single SU (3), this representation, which is not projected out, contains a one-form,

and the same is true for all the other representations in the horizontal axis of the diamond.

After this projection both type II theories have two gravitinos and two Weyl fermions

(dilatinos) in the (1,1) representations. They reside in the gravitational multiplet and the

‘universal’ tensor multiplet respectively. Furthermore, eq. (3.2) shows that there is a pair

of Weyl fermions in the representations (3,3)⊕(3̄, 3̄) and a pair in the (3̄,3)⊕(3, 3̄). These

fermions are members of vector- or hypermultiplets depending on which type II theory is

being considered.

The bosonic fields in the NS sector can be similarly decomposed under SU (3)×SU (3).

It is convenient to use the combination EMN = gMN + BMN of the metric and the B-field

since from a string theoretical point it is a tensor product of a left and a right NS-mode

excitation. As a consequence it decomposes under SU (3) × SU (3) as

Eµν : (1,1)±2 ⊕ (1,1)T ,

Eµm : (1,3)±1 ⊕ (1, 3̄)±1 ,

Emµ : (3,1)±1 ⊕ (3̄,1)±1 ,

Emn : (3,3)0 ⊕ (3̄, 3̄)0 ⊕ (3̄,3)0 ⊕ (3, 3̄)0 ,

(3.3)

where T denotes the antisymmetric tensor. Projecting out the representations (3,1),

(3̄,1), (1,3), (1, 3̄) leaves only Eµν and Emn in the spectrum. From a four-dimensional

point of view Eµν corresponds to the graviton and an antisymmetric tensor while Emn

represent scalar fields. The latter can be viewed as paramterizing the deformations of the

SU (3) × SU (3) structure or equivalently as deformations of the pure spinors Φ±. More

precisely, keeping the normalization of the pure spinors fixed, δΦ+ transforms in the (3̄,3),

while δΦ− transforms in the (3̄, 3̄) (and δΦ̄+, δΦ̄− transform in the complex conjugate

representations, (3, 3̄) and (3,3) respectively).
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multiplet SU (3) × SU (3)rep. bosonic field content

gravity multiplet (1,1) gµν , A+
1

tensor multiplet (1,1) Bµν , φ,A−
0

vector multiplets (3, 3̄) A+
1 , δΦ+

hypermultiplets (3,3) δΦ−, A−
0

Table 2: N=2 multiplets in type IIA

Finally we decompose the fields in the RR-sector. Here the bosonic fields arise from

the decomposition of (8S ,8C) for type IIA and (8S ,8S) for type IIB. One finds (after

projecting out the triplets)

IIA : (8S ,8C) → (1,1)±1,0 ⊕ (3,3)0 ⊕ (3̄, 3̄)0 ⊕ (3, 3̄)1 ⊕ (3̄,3)−1 ,

IIB : (8S ,8S) → (1,1)±1,0 ⊕ (3,3)1 ⊕ (3̄, 3̄)−1 ⊕ (3, 3̄)0 ⊕ (3̄,3)0 .
(3.4)

In type IIA the RR sector contains gauge potentials of odd degree. The decomposition (3.4)

naturally groups these into helicity ±1 and helicity 0 states from a four-dimensional point

of view. This leads us to define

A−
0 = A(0,1) + A(0,3) + A(0,5) ≃ (1,1)0 ⊕ (3,3)0 ⊕ (3̄, 3̄)0 ,

A+
1 = A(1,0) + A(1,2) + A(1,4) + A(1,6) ≃ (1,1)±1 ⊕ (3, 3̄)1 ⊕ (3̄,3)−1,

(3.5)

where A(p,q) is a ‘four-dimensional’ p-form and a ‘six-dimensional’ q-form.7 A−
0 contains

‘four-dimensional’ scalar degrees of freedom and is a sum of odd ‘six-dimensional’ forms

while A+
1 contains ‘four-dimensional’ vectors and is a sum even ‘six-dimensional’ forms.

In type IIB the situation is exactly reversed. Here we define

A+
0 = A(0,0) + A(0,2) + A(0,4) + A(0,6) ≃ (1,1)0 ⊕ (3, 3̄)0 ⊕ (3̄,3)0 ,

A−
1 = A(1,1) + A(1,3) + A(1,5) ≃ (1,1)1 ⊕ (3,3)1 ⊕ (3̄, 3̄)−1 .

(3.6)

As expected all these fields combine into N = 2 multiplets, as shown in tables 2 and 3.

We see that the fields arrange nicely and (mirror) symmetrically into multiplets of

a given Spin(6,6) chirality. Mirror symmetry amounts to a exchange of even and odd

Spin(6,6) chirality, or to an exchange of one 3 into a 3̄. This is the analogue of the

exchange between 6 ⊕ 3̄ and 8 ⊕ 1 proposed in [12] for a single SU (3) structure. From

these tables it should be clear that SU (3)× SU (3) structure is the relevant one for N = 2

effective actions coming from type II theories.

7There is an ambiguity in the representation of the scalar degrees of freedom arising in the RR-sector.

They can be equally well written as a four-dimensional two-form. On the other hand, A+
1 includes both

the vector and dual vector degrees of freedom.
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multiplet SU (3) × SU (3)rep. bosonic field content

gravity multiplet (1,1) gµν , A−
1

tensor multiplet (1,1) Bµν , φ,A+
0

vector multiplets (3,3) A−
1 , δΦ−

hypermultiplets (3, 3̄) δΦ+, A+
0

Table 3: N=2 multiplets in type IIB

4. N = 2 and N = 1 superpotentials

In this section we show that the N = 2 Killing prepotentials and the N = 1 superpotential

found for SU (3) structures in [45] have exactly the same functional form when the structure

is generalized to SU (3) × SU (3).

The N = 2 analogue of the N = 1 superpotential and the N = 1 D-term are encoded

in the Killing prepotentials Px, x = 1, 2, 3. These, together with its derivatives, determine

the scalar potential [55]. The Killing prepotentials can equivalently be expressed in terms

of the SU (2)8 gravitino mass matrix SAB, via

SAB =
i

2
e

1
2KV σx

ABPx, σx
AB =

(

δx1 − iδx2 −δx3

−δx3 −δx1 − iδx2

)

, (4.1)

where KV is the Kähler potential of the vector multiplets. The gravitino mass matrix

SAB is obtained from the supersymmetry transformation of the four-dimensional N = 2

gravitinos, which has the generic form

δψA µ = DµεA + iγµSABεB , A = 1, 2 (4.2)

The four dimensional gravitinos ψA µ are related to the ten dimensional ones ΨM by [45]

Ψ̂A
µ := ΨA

µ + 1
2Γµ

mΨA
m = ψA µ+ ⊗ ηA

± + ψA µ− ⊗ ηA
∓ + . . . (4.3)

where no sum over A is taken on the right hand side, and the ± are correlated to the

chirality of the ten-dimensional spinor, that we take to be negative (positive) for A = 1

(2) in IIA, and negative for A = 1, 2 in IIB. In this expression, the dots correspond to the

triplets.

8The four-dimensional N = 2 theory has a local SU (2)R symmetry which rotates the two (complex)

gravitinos ψA µ into each other. In ten dimensions it arises from the O(2) rotation of the two ten-dimensional

Majorana-Weyl fermions into each other.
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The supersymmetry transformation of the gravitinos for the democratic formula-

tion [56] in Einstein frame is

δΨM = DM ǫ − 1

96
e−φ/2

(

ΓM
PQRHPQR − 9ΓPQHMPQ

)

Pǫ

−
∑

n

e(5−n)φ/4

64n!

[

(n − 1)ΓM
N1...Nn − n(9 − n)δM

N1ΓN2...Nn
]

FN1...Nn Pn ǫ . (4.4)

In this expression, n = 0, 2, 4, 6, 8, P = Γ11 and Pn = (Γ11)
n/2σ1 for IIA. For IIB we have

instead a sum over n = 1, 3, 5, 7, 9, P = −σ3 and Pn = iσ2 for n = 1, 5, 9 and Pn = σ1 for

n = 3, 7.

In order to get SAB, we need to project the supersymmetry transformation of the ten-

dimensional shifted gravitino δΨ̂µ onto the SU (3)-singlet parts. The relevant projector for

type IIB is

Π =

(

Π1
−

Π2
−

)

=

(

1⊗ η1
−η̄1

−

1⊗ η2
−η̄2

−

)

(4.5)

(we are using η̄A
±ηA

± = 1). For type IIA, we have instead Π1
− and Π2

+ = 1 ⊗
(

η2
+ ⊗ η̄2

+

)

. In

the following we show the details of the type IIB calculation but only give the results for

type IIA since it follows straightforwardly.

Inserting the projector (4.5) in δΨ̂µ, we get
(

δψ1
µ +

δψ2
µ +

)

=

(

Dµǫ1
+

Dµǫ2
+

)

− 1

2

(

γµǫ1
− η̄1

−γmDmη1
+

γµǫ2
− η̄2

−γmDmη2
+

)

+
1

48

(

γµǫ1
− Hpqr η̄1

−γpqrη1
+

−γµǫ2
− Hpqr η̄2

−γpqrη2
+

)

−1

8

(

−γµǫ2
− eφ 1

n!F
−
i1...in

η̄1
−γi1...inη2

+

γµǫ1
− eφ 1

n!σ(F−)i1...in η̄2
−γi1...inη1

+

)

, (4.6)

where we have written the expressions in terms of string frame metric g = eφ/2gE .

Furthermore F− = F1 + F3 + F5 is the sum of odd internal RR field strengths, and

σ(F−) = −F1 + F3 − F5 is the combination of forms that appears in the Mukai pairing,

eq. (2.7) (σ(Fǫ) = F T
ǫ in the spinor language) . From this we read off

S11 =
i

2
η̄1
−γmDmη1

+ − i

48
Hpqr η̄1

−γpqrη1
+ ,

S22 =
i

2
η̄2
−γmDmη2

+ +
i

48
Hpqr η̄2

−γpqrη2
+ ,

S12 =
i

8
eφ 1

n!
F−

i1...in
η̄1
−γi1...inη2

+ ,

S21 =
i

8
eφ 1

n!
σ(F )−i1...in

η̄2
−γi1...inη1

+ . (4.7)

Multiplying by a volume form ǫ and using (2.12), we can write these expressions in terms

of Mukai pairings. S12 is the simplest one,

S12 ǫ = S21 ǫ = i tr (η2
+η̄1

−γi1...in)
1

n!
F−

i1...in
ǫ = − tr((Φ−

0 )tǫF
−
ǫ ) ǫ

=
1

8
〈Φ−

0 , F−〉 =
1

8
〈Φ−, G−〉 ,

(4.8)
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where Φ−
0 is defined in (2.14). In the third equality we have used (Φ−

0 )tǫ = iη2
+η̄1

− (see

appendix A for more details) and we recall that F is related to Fǫ by (2.9). In the first

equality, we use σ(F )ǫ = F T
ǫ . Finally, in the last equality we have defined the RR flux G

through

F = dC − H ∧ C = eBG . (4.9)

G is the flux for the potentials A used in the previous section, namely

G+ = dA−
0 , G− = dA+

0 . (4.10)

which implies that A is related to C by C = eBA.

The diagonal pieces in SAB require a bit more work. It is easier to show that they can

also be expressed in terms of Mukai pairings by working backwards, i.e. starting from the

latter and arriving at the bilinears in (4.7). Using the relation (2.11) we have

dΦ+
0 = 1

2

[

γm,Dm(η1
+η̄2

+)
]

+

= 1
2

[

(γmDmη1
+)η̄2

+ + (γmη1
+)(Dmη̄2

+) + (Dmη1
+)(η̄2

+γm) + η1
+(Dmη̄2

+γm)
]

.
(4.11)

Similarly

H ∧ Φ+
0 = 1

48Hmnp

[

γmnpη1
+η̄2

+ + 3γmnη1
+η̄2

+γp + 3γmη1
+η̄2

+γnp + η1
+η̄2

+γmnp
]

. (4.12)

Now we have by chirality and the symmetry of the gamma matrices

η̄−η+ = η̄−γmη+ = η̄+γmη+ = 0. (4.13)

Hence, we have

1

8

〈

Φ−,dΦ+
〉

=
1

8

〈

Φ−
0 , (dΦ+

0 − H ∧ Φ+
0 )

〉

= − tr
[

(

Φ−
0

)t

ǫ

(

dΦ+
0 − H ∧ Φ+

0

)

ǫ

]

ǫ

= −
[

i
2 η̄1

−γmDmη1
+ − i

48Hmnpη̄
1
−γmnpη1

+

]

ǫ = −S11 ǫ,
(4.14)

where only the first terms in (4.11) and (4.12) survive. Similarly, one shows that

1

8

〈

Φ−,dΦ̄+
〉

= S22 ǫ (4.15)

where now the last terms of the expressions (4.11) and (4.12) corresponding to Φ̄+
0 are the

only ones that survive when inserted in the Mukai pairing.

Collecting all the pieces together, we get for the matrix SAB in type IIB

S
(4)
AB(IIB) =

1

8
e

1
2
K−





−e
1
2
K++φ(4) 〈

Φ−,dΦ+
〉

−e2φ(4) 〈

Φ−, G−
〉

−e2φ(4) 〈

Φ−, G−
〉

e
1
2
K++φ(4) 〈

Φ−,dΦ̄+
〉



 . (4.16)

In this expression the superscript (4) indicates that in (4.2) we are using the natural

metric on T 1,3: g
(4)
µν = e−2φ(4)

gµν . The four dimensional dilaton φ(4) is related to the

ten dimensional one and the string frame metric by φ(4) = φ − 1
4 ln det gmn. The Kähler
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potentials K± are defined in (2.23) and we have used that all the six-forms are related by

the normalization condition

ǫ = i
〈

Φ±, Φ̄±
〉

= e−K±

= e−2φ(4)+2φ . (4.17)

Note that SAB is naturally a section of (Λ6F ∗)−1/2.

The calculation for type IIA follows straightforwardly, and gives

S
(4)
AB(IIA) =

1

8
e

1
2
K+





e
1
2
K−+φ(4) 〈

Φ+,dΦ−
〉

e2φ(4) 〈

Φ+, G+
〉

e2φ(4) 〈

Φ+, G+
〉

−e
1
2
K−+φ(4) 〈

Φ+,dΦ̄−
〉



 . (4.18)

The gravitino mass matrices obtained have excately the same functional form in terms

of Φ± as the one obtained in [45] for a single SU (3) structure, confirming the claim made

there.9 They are symmetric under the mirror exchange Φ+ ↔ Φ−, G+ ↔ G−.

Given the N = 2 Killing prepotentials, the computation of the N = 1 superpotential

is exactly the same as for a single SU (3) structure. We will therefore not show the details,

worked out in [45], but just quote the result10

WIIA = cos2 α eiβ〈Φ+,dΦ−〉 − sin2 α e−iβ〈Φ+,dΦ̄−〉 + sin 2α eφ
〈

Φ+, G+
〉

, (4.19)

and

WIIB = − cos2 α eiβ
〈

Φ−,dΦ+
〉

+ sin2 α e−iβ
〈

Φ−,dΦ̄+
〉

− sin 2α eφ
〈

Φ−, G−
〉

. (4.20)

where α and β parameterize the U(1)R ∈ SU (2)R of N = 1, namely the N = 1 supersym-

metry parameter ε is given in terms of the N = 2 parameters εA by

εA = εnA, nA =

(

a

b

)

, a = cos αe−
i
2β , b = sin αe

i
2β . (4.21)

(We have absorbed the factors of 1/8 in (4.16), (4.18) in the definition of W.) The difference

between the SU (3) × SU (3) and SU (3) superpotential is in the form of the pure spinors,

which leads to the appearance of new terms involving the five-form dΦ+
4 . As we will see in

the next section, these are the mirrors of magnetic fluxes missing in pure SU (3) structure

constructions.

5. Mirror of magnetic fluxes

Thus far we rewrote the ten-dimensional type II supergravity in a background which admits

an SU (3)×SU (3) structure. In this section we consider an actual compactification so that

9The differences in factors are due to different conventions for the normalizations of the spinors, while

S11 and S22 in type IIA are interchanged with respect to the expressions in [45] because we have taken

opposte conventions for the chiralities of the type IIA spinors.
10For orientifold compactification on SU (3) × SU (3) manifolds the superpotential has been computed

in [48] by reducing the ten-dimensional gravitino mass term.
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the background M9,1 = M3,1 ×M6 where M6 is a compact manifold with SU (3)× SU (3)

structure. Such reductions in the special case of a pure SU (3) structure were discussed in

ref. [45]. The analysis here is completely analogous and therefore we only briefly review

this step. In addition, we will truncate the degrees of freedom in the forms Φ± to a finite

dimensional space, giving a conventional effective N = 2 supergravity theory on M3,1. In

the case of the Calabi-Yau this truncation translates into keeping only harmonic forms and

describes the moduli of the Calabi-Yau manifold. As we will see, in general situations, it

is more complicated. This is discussed in section 5.2 as well as the appendix B.

The generic case will be considered in the next section. In this section we concentrate

on a particular subclass of compactifications for which one obtains the mirror dual of

compactifications on Calabi-Yau manifolds with magnetic H3-flux. This case was missing

in refs. [11, 45] and as a consequence the final results were not mirror symmetric. Here we

close this gap and suggest a completely mirror symmetric background. Related work has

been performed in refs. [23, 25, 48] and we comment on the relation in section 7.

By way of comparison we first briefly consider the case of compactification on a Calabi-

Yau manifold with generic H3-flux in the language of generalised structures and identify the

truncation. We then discuss the analogous structure for the mirror symmetric background.

5.1 Generalised geometry and H3-flux

Let us review the derivation of the low-energy effective action arising from a compactifica-

tion on a Calabi-Yau manifold M6 with general H3-flux [57 – 59, 19, 60, 61, 22, 45].

One starts by identifying the moduli. Since we want to consider non-trivial H3 flux

we first split the (local) potential B into flux and moduli pieces

B = Bfl + B̃, dBfl = H3, dB̃ = 0. (5.1)

The usual Calabi-Yau moduli correspond to expanding the Kähler form J , the modulus

part B̃ and the holomorphic three-form Ω on M6 in terms of forms which are harmonic

with respect to the metric defined by the SU (3) structure (J,Ω).

Specially one expands the three-form Ω in terms of a symplectic basis of harmonic

three-forms

α
(0)
I , β(0)I ∈ H3(M6, R) , I = 0, . . . , h2,1, (5.2)

with ∫

M6

〈

α
(0)
I , β(0)J

〉

= δI
J , (5.3)

and all other pairings vanishing, where we have written the symplectic structure in terms of

the Mukai pairing
〈

·, ·
〉

. One similarly introduces a set of even harmonic forms to expand

J and B̃:
ω

(0)
0 = 1 ∈ H0(M6, R), ω(0)

a ∈ H2(M6, R),

ω̃(0)0 ∈ H6(M6, R), ω̃(0)a ∈ H4(M6, R),
(5.4)

with a = 1, . . . , h1,1 and
∫

M6

〈

ω
(0)
A , ω̃(0)B

〉

= δA
B , A,B = 0, . . . , h1,1, (5.5)
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and all other pairings vanishing. Explicitly, the complex Kähler form is expanded as

B̃ + iJ = taω
(0)
a . Note that the condition J ∧ Ω = 0 implies that

ω(0)
a ∧ α

(0)
A = ω(0)

a ∧ β(0)A = 0 ∀a,A. (5.6)

which is satisfied identically for harmonic forms.

It is a standard result that there are natural local special Kähler metrics on the moduli

spaces of B+iJ and Ω. These describe the kinetic energy terms of the moduli in the effective

four-dimensional N = 2 theory. The properties of special Kähler metrics are discussed in

appendix B. In general they are determined by a holomorphic prepotential F . In the

Calabi-Yau context, for the Kähler moduli, introducing homogeneous complex coordinates

X0 = c and Xa = −cta the corresponding pure spinor can be written as

e−B̃Φ+
0 = ce−B̃−iJ = XAω

(0)
A − FAω̃(0)A, (5.7)

where FA = ∂F/∂XA. Similarly, one has homogeneous complex coordinates ZI for the

complex structure moduli such that the pure spinor corresponding to Ω has the form

e−B̃Φ−
0 = − i

8 Ω = ZIα
(0)
I −FIβ

(0)I , (5.8)

where again FI = ∂F/∂ZI . Using (5.6) one notes that e−B̃Φ−
0 = Φ−

0 . The corresponding

Kähler potentials are given by

e−K+
= i

∫

M6

〈

Φ+
0 , Φ̄+

0

〉

= c2

48

∫

M6

J ∧ J ∧ J = i
(

X̄AFA − XAF̄A

)

,

e−K−

= i

∫

M6

〈

Φ−
0 , Φ̄−

0

〉

= i
64

∫

M6

Ω ∧ Ω̄ = i
(

Z̄IFI − ZIF̄I

)

.

(5.9)

In deriving the low-energy effective action we assume that the flux H3 also satisfied

the Bianchi identity and equations of motion, and hence is also harmonic. This means

H3 = dBfl = −mIα
(0)
I + eIβ

(0)I (5.10)

where mI are the “magnetic” fluxes and eI the “electric” fluxes. Note that for a consistent

string theory background the charges mI and eI must be integral.

Now in the general expressions for the superpotentials given section 4 the pure spinors

Φ± were twisted by the full potential B = Bfl +B̃. It is then natural to introduce a twisted

basis of forms. We write

Φ+ = e−BΦ+
0 = XAωA − FAω̃A,

Φ− = e−BΦ−
0 = ZIαI −FIβ

I ,
(5.11)

where the twisted basis forms are given by

ωA = e−Bfl
ω

(0)
A , ω̃A = e−Bfl

ω̃(0)A,

αI = e−Bfl
α

(0)
I , βI = e−Bfl

β(0)I .
(5.12)
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Note that (ωA, ω̃A) and (αI , β
I) are no longer of pure degree. Since the Mukai pairing is

invariant under O(6, 6) transformations we still have the symplectic structure

∫

M6

〈

ωA, ω̃B
〉

= δA
B,

∫

M6

〈

αI , β
J
〉

= δI
J , (5.13)

with the other pairings vanishing. The Kähler potentials K± = − ln i
∫

M6

〈

Φ±, Φ̄±
〉

are

similarly still given by (5.9). Note that this twisted basis is an example of a generic

truncation, satisfying the necessary conditions discussed in appendix B.

Crucially the new basis forms are no longer closed. Using the conditions (5.6), we find

that the only non-zero terms are

dω0 = −e−Bfl
H3 ∧ ω

(0)
0 = e−Bfl

(mIα
(0)
I − eIβ

(0)I),

dαI = −e−Bfl
H3 ∧ α

(0)
I = e−Bfl

(mJα
(0)
J − eJβ(0)J ) ∧ α

(0)
I ,

dβI = −e−Bfl
H3 ∧ β(0)I = e−Bfl

(mJα
(0)
J − eJβ(0)J ) ∧ β(0)I .

(5.14)

Let us introduce a notation “∼” to denote equality up to terms which vanish under the

symplectic pairing (5.13) with any basis form. The non-zero terms are then given by

dω0 ∼ mIαI − eIβ
I , dαI ∼ eI ω̃

0, dβI ∼ mIω̃0, (5.15)

where we have used (5.5), and where the first expression is actually an equality.

The corresponding low-energy effective action of Calabi-Yau compactifications with

electric and magnetic fluxes has been derived in refs. [57 – 59, 19, 60, 61, 22, 45] and for

later reference we recall the Killing prepotentials computed in [45] here. For type IIA one

has

P1 + iP2 = i
4e

1
2
K−+φ(4)

∫

M6

Ω ∧ H3 = −2e
1
2
K−+φ(4)(

eIZ
I −FIm

I
)

,

P3 = e2φ(4)

∫

M6

A3 ∧ H3 = e2φ(4)(

ξIeI + ξ̃Im
I
)

.

(5.16)

In type IIB one finds instead

P1 − iP2 = − i
4e

1
2
K++φ(4)

∫

M6

Ω ∧ H3 = −2e
1
2
K++φ(4)(

eIZ
I −FIm

I
)

,

P3 = − i
8e2φ(4)

ξ0

∫

M6

Ω ∧ H3 = e2φ(4)
ξ0

(

eIZ
I −FIm

I
)

,

(5.17)

where ξ0 is the RR scalar of type IIB.

To summarize, we have reformulated the moduli and flux expansion in the conventional

Calabi-Yau compactification in terms of a slightly modified set of twisted forms which

naturally include the H3-flux and are appropriate to the generalised geometry. A key point

is that the elements of the new bases are neither of pure degree nor are closed. As we will

see in the next section, this provides a very natural ansatz for the corresponding expansion

for the mirror geometries.
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5.2 Generalised geometry and the mirror of H3-flux

Following the setup of ref. [45] and in analogy with our reformulation of the Calabi-Yau

compactification with H3-flux, we now look for some basis of forms on M6 in which to

expand the fields of the ten-dimensional background (summarized in tables 2 and 3). It is

clear from the Calabi-Yau discussion that in general the basis forms in Λ∗TM∗ need not

be of pure degree, nor closed.

Physically we are keeping only certain modes in the entire tower of Kaluza-Klein exci-

tations which correspond to the light modes of the compactification. Obviously to actually

identify this hierarchy of excitations requires a knowledge of the particular properties of

M6. In the following, rather than fix the manifold and show that there is a sensible set of

light modes, we will simply assume there is such an expansion and discuss its consistency

conditions. (For a further discussion of when such a truncation exists see [50].) Indeed,

if mirror symmetry can be defined for a Calabi-Yau compactification with H3 flux, then

there must be some dual compactification for which such a hierarchical expansion can be

identified.

The general truncation consistency conditions are discussed in detail in appendix B.11

Since Φ± and G± are sums of either odd or even forms, our basis should similarly be in

terms of odd or even forms. For the kinetic terms to make sense (and to have the correct

multiplet structure) we better ensure that the special Kähler geometry for the untruncated

Φ± descends to a special Kähler geometry for the finite number of modes we are keeping.

In general we identify two finite-dimensional subspaces U± ⊂ C∞(S±(E)) and require

Φ± to lie in U±. Explicitly we can expand Φ± in terms of a basis of forms

Σ+ = {ωA, ω̃B}, A = 0, . . . , b+,

Σ− = {αI , β
J}, I = 0, . . . , b−.

(5.18)

which define a symplectic structure
∫

M6

〈ωA, ω̃B〉 = δA
B ,

∫

M6

〈αI , β
J 〉 = δI

J , (5.19)

with all other pairings vanishing. For there to be a natural local special Kähler structure on

U±/C
∗, these bases must satisfy a number of other conditions given in detail in appendix B.

Ignoring the compatibility condition (2.19) one can then introduce holomorphic coordinates

and prepotentials as before, and expand the pure spinors Φ± as follows

Φ+ = XAωA − FAω̃A , Φ− = ZIαI −FIβ
I . (5.20)

Generically, however, the compatibility condition (2.19) imposes a relation between

the moduli. To avoid this, we will assume, that (2.19) is satisfied by each pair of basis

forms
〈

ωA, V · αI

〉

=
〈

ωA, V · βI
〉

=
〈

ω̃A, V · αI

〉

=
〈

ω̃A, V · βI
〉

= 0 , (5.21)

for all V = x + ξ ∈ E. These are the analogues of the conditions (5.6) in the Calabi-Yau

case and imply that the expressions (5.20) are valid without constraining the moduli. In

11The conditions in the special case of a generic SU (3) structure were also analysed recently in [50].
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fact (5.21) further implies that there are no triplet representations under SU (3) × SU (3)

in the expansion which has to hold so that no additional spin-3
2 multiplets are in the light

spectrum. To see this, note, first, that a generic χ ∈ S(E) contains eight triplet components

as indicated in table 1. Similarly, a generic vector V ∈ E decomposes into four triplets

(3,1)+ (3̄,1)+ (1,3)+ (1, 3̄) under SU (3)×SU (3). Since the Mukai pairing and the pure

spinors Φ± are singlets, the condition

〈

Φ+, V · χ
〉

=
〈

Φ−, V · χ
〉

= 0, ∀V ∈ E, (5.22)

is equivalent to setting the eight triple components of χ to zero. Given the expansion (5.18)

and using the fact that
〈

ψ, V · χ
〉

= −
〈

χ, V · ψ
〉

, it is easy to check that (5.22) is indeed

satisfied for every basis form.

The truncated Kähler potentials are given by the same expressions as in the Calabi-Yau

case (5.9) and read

e−K+
= i

∫

M6

〈

Φ+, Φ̄+
〉

= i
(

X̄AFA − XAF̄A

)

,

e−K−

= i

∫

M6

〈

Φ−, Φ̄−
〉

= i
(

Z̄IFI − ZIF̄I

)

.

(5.23)

For the Ramond-Ramond fields we expand the combinations A±
0 and A±

1 defined in

eqs. (3.6), (3.5) in terms of the symplectic basis (5.19) as follows

A+
0 = ξAωA + ξ̃Bω̃B , A−

1 = AI
1αI + Ã1JβJ ,

A−
0 = ξIαI + ξ̃JβJ , A+

1 = AA
1 ωA + Ã1Bω̃B .

(5.24)

ξA and ξ̃B are scalars and AI
1 and Ã1J are vectors in type IIB while ξI , ξ̃J , AA

1 and Ã1B

are scalars and vectors of type IIA respectively. In the following it will sometimes be

more convenient to dualize the scalars of A+
0 and A−

0 to antisymmetric tensors and, when

appropriate, discuss the effective theory in terms of them.12 Thus we define

A+
2 = C̃A

2 ωA + C2Bω̃B , A−
2 = C̃I

2αI + C2JβJ , (5.25)

where from a four-dimensional point of view A+
2 is dual to A+

0 and A−
2 is dual to A−

0 . At

the level of the four-dimensional fields the duality relates

ξA ↔ C2A , ξ̃B ↔ C̃B
2 , ξI ↔ C2I , ξ̃J ↔ C̃J

2 . (5.26)

The goal of this section is to find the dual of the magnetic fluxes. We know that

mirror symmetry essentially exchanges ΛevenT ∗M6 and ΛoddT ∗M6. We also showed in the

previous section that the H3 flux is naturally incorporated in the generalised geometry

picture as non-closed basis forms (5.14). Thus for the mirror compactification it is natural

12The reason is that the magnetic fluxes or torsion charges generate masses for some of the antisymmetric

tensors and the discussion becomes a bit more involved in terms of scalar degrees of freedom [19, 61, 62].
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to take the same differential conditions (5.14) but with the roles of odd and even forms

reversed:13

dα0 ∼ pAωA + eAω̃A , dωA ∼ −eAβ0 , dω̃A ∼ pAβ0 . (5.27)

Note that as before these relations are only up to terms which vanish under the symplectic

pairing (5.19). Here we have singled out two of the basis forms α0 and β0. This is a

familiar property of local special Kähler metrics. The point is that the Φ± are only defined

up to complex rescalings. From eqs. (5.23) we see that Φ± → c±Φ± amounts to a Kähler

transformation of K±. Therefore it is possible to go to ‘special coordinates’ where one of

the XA and one of the ZI , say X0 and Z0, is scaled to one. This arbitrarily singles out

one of each of the basis elements namely ω0 and α0, and the dual ω̃0 and β0.

For pA = 0 the conditions (5.27) precisely correspond to the conditions imposed in

ref. [11] with eA being the mirror dual of the electric fluxes. Note that in ref. [11] it was

assumed that all the basis forms were of pure degree and hence pA was necessarily zero. The

generalisation here is that we allow the basis forms to be of mixed degree. The next step

is to show that the pA in (5.27) corresponds to the mirror dual of the magnetic fluxes. We

do not compute the entire effective action but instead only focus on the mass terms of the

antisymmetric tensor, the covariant derivatives of the scalars and the Killing prepotential.

Let us discuss these in turn.

The ten-dimensional type IIA action contains terms of the form |G2p|2 where G2p =

dA2p−1 is the 2p-form field strength of the (2p − 1)-form gauge potential A2p−1. In the

compactified theory the combination dA−
2 +d4A

−
1 appears where now d denotes the exterior

derivative on M6 while d4 is the exterior derivative on M3,1. Using (5.24) and (5.27) we

find

dA−
2 + d4A

+
1 = DA

2 ωA + D̃2A ω̃A , (5.28)

where
DA

2 = C̃0
2 pA + d4A

A
1 ,

D̃2A = C̃0
2 eA + d4Ã

A
1 .

(5.29)

DA
2 is invariant under the combined gauge transformations

δC̃0
2 = d4Θ1 , δAA

1 = −pAΘ1 , (5.30)

where Θ1 is a one-form gauge parameter. We see that by an appropriate gauge choice one

linear combination of vectors AA
1 can be removed from the spectrum or in other words they

become the longitudinal degree of freedom of a massive C̃0
2 . Indeed, repeating the analysis

of ref. [19, 11] one easily shows that the effective action contains terms proportional to

D2 ∧ D2 and D2 ∧ ∗D2. From this we conclude that for pA 6= 0 the antisymmetric tensor

C̃0
2 aquires a mass by a Stueckelberg mechanism or in other words by ‘eating’ a vector.

This is precisley what one finds in Calabi-Yau compactifications of type IIB with magnetic

fluxes as computed in ref. [11] and thus we have a first crucial check that we have succesfully

identified the mirror dual compactification.

13Note that d2 = 0 is automatically satisfied.
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As a second check let us compute the Killing prepotential on the finite subspaces U±.

Using (5.20), (5.24), (5.27) and G+ = dA−
0 we obtain from (4.18)

P1 + iP2 = −2e
1
2
K−+φ(4)

∫

M6

〈

Φ+,dΦ−
〉

= −2e
1
2
K−+φ(4)(

XAeA + FApA
)

,

P3 = e2φ(4)

∫

M6

〈

Φ+, G+
〉

= e2φ(4)
ξ0

(

XAeA + FApA
)

.

(5.31)

These are precisely the correct Killing prepotential for the mirror dual compactification as

can be seen by comparing with eq. (5.17). Under the exchange XA ↔ ZI , FA ↔ FI ,

eI ↔ eA, mI ↔ − pA the expressions are identical.

For completness let us also display the results for type IIB compactifications. In this

case no antisymmetric tensor becomes massive and thus it is more convenient to use the

scalars in A+
0 of (5.24) in our discussion. From the ten-dimensional type IIB action one

obtains the combination dA+
1 +d4A

+
0 in the four-dimensional effective action. Using (5.24)

and (5.27) we find

dA−
1 + d4A

+
0 = DξA ωA + Dξ̃A ω̃A (5.32)

where

DξA = d4ξ
A − pAA0

µ , Dξ̃A = d4ξ̃A − eAA0
µ . (5.33)

We see that, depending on the choice of pA, eA, a linear combination of ξA, ξ̃A becomes

the longitudinal degree of freedom of a massive vector A0
µ. Again, this is precisley what

one finds in Calabi-Yau compactifications of type IIA with electric and magnetic fluxes as

computed in ref. [19]. The corresponding Killing prepotentials are given by

P1 − iP2 = −2e
1
2
K++φ(4)

∫

M6

〈

Φ−,dΦ+
〉

= −2e
1
2
K++φ(4)(

XAeA + FApA
)

,

P3 = e2φ(4)

∫

M6

〈

Φ−, G−
〉

= e2φ(4)(

ξAeA − ξ̃ApA
)

,

(5.34)

which again are perfectly mirror symmetric to (5.16).

Let us summarize. By considering compactifications of type IIA on a specific class of

manifolds with SU (3)×SU (3) we were able to identify mirror duals of type IIB compactifi-

cations on Calabi-Yau threefolds with generic background H3-flux. The dual manifolds are

characterized by the condition (5.27) which generalize the half-flat conditions of ref. [11].

The new ingredient is a non-zero parameter pA which plays the role of a dual magnetic

flux.14 Note that the quantization of the dual H3 implies that eA and pA are similarly

integral. In simple examples, these conditions are necessarily satisfied since eA and pA are

related to topological invariants of the manifold.

Instead of giving (5.27) we can equally well specify differential constraints of Φ±.

Using (5.20) one obtains

dΦ+ = −(XAeA + FApA)β0 , dΦ− = pAωA + eAω̃A . (5.35)

14This dual background has also been confirmed by identifying mirror symmetric N = 1 domain wall

solutions [63].
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This compares with

dΦ+ = mIαI − eIβ
I , dΦ− = (ZIeI −FIm

I) ω̃0 , (5.36)

for the case of a Calabi-Yau compactification with H3 flux. As expected we see that mirror

symmetry is just exchanging odd and even forms. Note that the right hand side of dΦ−

in (5.35) is real and thus we have

d Im Φ− = 0 . (5.37)

The same constraint holds for half-flat manifolds but in that case also J ∧ J is closed.

Here, this second constraint no longer holds. Furthermore, since αI and βI are generically

of mixed degree, Φ− is no longer purely a three-form.

6. Generic SU (3) × SU (3) compactifications

In the previous section we considered manifolds with SU (3) × SU (3) structure which can

serve as mirror dual compactifications of Calabi-Yau backgrounds with generic NS-flux.

In this section we consider a more general class of compactifications by relaxing (5.27)

and (5.35). As before we consider a generic truncation (5.18), with the triplets projected

out, but now allow for the most general differential conditions which can be imposed on

the two symplectic basis. They read

dαI ∼ pA
I ωA + eIAω̃A , dβI ∼ qIAωA + mI

Aω̃A,

dωA ∼ mI
AαI − eIAβI , dω̃A ∼ −qIAαI + pA

I βI ,
(6.1)

where pA
I , eIA, qIA,mI

A are four (b++1)×(b−+1)-dimensional constant matrices. Following

the discussion of the previous section, we expect these matrices to take integer values. In

order to make the symplectic structure manifest let us introduce a notation for the two

symplectic basis

Σ+ :=

(

ωA

ω̃B

)

, Σ− :=

(

αI

βJ

)

. (6.2)

In terms of Σ+ and Σ− eq. (6.1) turns into

dΣ− ∼ QΣ+ , dΣ+ ∼ S+QT (S−)−1 Σ− (6.3)

where

Q =

(

pI
A eIB

qJA mJ
B

)

, (6.4)

and S+ and S− are the symplectic structures on U+ and U−. Note that dΣ− and dΣ+

have to depend on the same matrix Q in order to ensure consistency of
∫

M6

〈

Σ+,dΣ−
〉

=
∫

M6

〈

dΣ+,Σ−
〉

. Furthermore d2 = 0 implies two additional quadratic constraints

QS+QT = 0 = QT (S−)−1Q , (6.5)
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or explicitly

qIAmJ
A − mI

AqAJ = 0 , pA
I eAJ − eIApA

J = 0 , pA
I mJ

A − eIAqAJ = 0 ,

qAIpB
I − pA

I qIB = 0 , mI
AeIB − eAIm

I
B = 0 , mI

ApB
I − eAIq

IB = 0 .
(6.6)

The ‘doubly symplectic’ charge matrix Q has also been discussed in refs. [64, 65].

Note that we can count the number of independent charges in Q as follows. Formally

Q is a linear map Q : U− → U+, or equivalently Q ∈ (U−)∗ ⊗ U+. The conditions (6.5)

imply that images of Q and QT are isotropic subspaces, denoted by L+ := imQ ⊂ U+

and L̄− := imQT ⊂ (U−)∗ respectively. Equivalently, Q ∈ L̄− ⊗ L+, with, as for any

linear map, p := dimL+ = dim L̄−. Since L+ and L̄− are isotropic we have p ≤ b+ + 1 and

p ≤ b−+1. Furthermore, a p-dimensional isotropic subspace in a 2d-dimensional symplectic

space is determined by 2dp − 1
2p(p− 1) parameters. Thus counting first the parameters in

choosing L+ and L̄− and then the p2 independent elements of Q given L+ and L̄−, we find

that generically

dimQ =

{

(2b− + 3)(b+ + 1) if b+ ≤ b−

(2b+ + 3)(b− + 1) if b− ≤ b+
(6.7)

corresponding to p = b+ + 1 and p = b− + 1 respectively.

The next step is to compute again the Killing prepotentials. In the type IIA low energy

effective action the quantity dA−
2 + d4A

+
1 appears exactly as in the previous section and it

again obeys the expansion (5.28). However due to (6.1) the coefficients of this expansion

now read
DA

2 = C̃I
2pA

I + C2Iq
AI + d4A

A
1 ,

D̃2A = C̃I
2eAI + C2Im

I
A + d4Ã

A
1 .

(6.8)

Recall that dim(imQ) = p with p ≤ b+ + 1 and p ≤ b− + 1. Hence the number of linearly

independent massive antisymmetric tensors DA
2 and D̃2A in (6.8) is p. Thus if b+ ≥ b− at

most b− + 1 tensors are massive, and if b− ≥ b+ at most b+ + 1 tensors are massive.

The Killing prepotentials are always expressed in terms of the scalar fields. They can

be computed exactly as in the previous section but now using (6.1) instead of (5.27). This

yields

P1 + iP2 = −2e
1
2
K−+φ(4)

∫

M6

〈

Φ+,dΦ−
〉

= 2e
1
2
K−+φ(4)(

V −TS−QV +
)

= 2e
1
2
K−+φ(4)( − XAeAIZ

I + XAmI
AFI − FApA

I ZI + FAqAIFI

)

,

(6.9)

and

P3 = e2φ(4)

∫

M6

〈

Φ+, G+
〉

= e2φ(4)(

V −T
ξ S−QV + + V +T

RR S+V +
)

= e2φ(4)
[

(XA(G̃RR A + eAIξ
I + mI

Aξ̃I) + FA(GA
RR + pA

I ξI + qAI ξ̃I)
]

,

(6.10)
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where we introduced the symplectic sections

V + =

(

FA

XB

)

, V − =

(

FI

ZJ

)

, V −
ξ =

(

ξ̃I

−ξJ

)

, V +
RR =

(

G̃RR A

−GB
RR

)

,

(6.11)

and expanded

G+ = GA
RRωA + G̃RR Aω̃A + dA−

0 . (6.12)

Here GA
RR, G̃RR A denote the RR-fluxes.15 Note that P1 + iP2 has the same form as the

superpotential introduced in ref. [64] where it was inferred from F-theory considerations. It

would be interesting to make the correspondence with the results of ref. [64] more precise.

In the large volume limit the holomorphic prepotential F is a cubic function of the

scalar fields in the vector multiplets. From (6.9) we see that the matrices pA
I and qAI

multiply quadratic and cubic terms while eAI and mI
A multiply constant and linear terms.

Mirror symmetry implies that there is a limit where F has a similar expansion. In the

next section we discuss the specific example of flux backgrounds on twisted toroidal com-

pactification in more detail, hence establishing the relation of these results with those of

ref. [25].

Let us turn to type IIB. In order to see massive tensors occuring one considers the

quantity dA+
2 +d4C

−
1 instead of dA−

1 +d4C
+
0 as done in (5.32). Using (6.1) and (5.25) one

finds

dA+
2 + d4A

−
1 = DI

2 αI + D̃2J βJ , (6.13)

where
DI

2 = −C̃A
2 mI

A + C2AqAI + d4A
I
1 ,

D̃2I = C̃A
2 eAI − C2ApA

I + d4Ã
I
1 .

(6.14)

The Killing prepotentials are again expressed in terms of scalar fields. Repeating the

calculation of the last section with (5.27) replaced by (6.1) one finds

P1 − iP2 = −2e
1
2
K++φ(4)

∫

M6

〈

Φ−,dΦ+
〉

= 2e
1
2
K++φ(4)(

V −TS−QV +
)

= 2e
1
2
K++φ(4)( − ZIeIAXA − ZIpA

I FA + FIm
I
AXA + FIq

IAFA

)

,

(6.15)

and

P3 = −e2φ(4)

∫

M6

〈

Φ−, G−
〉

= −e2φ(4)(

V −TS−QV +
ξ + V −T

RR S−V −
)

= −e2φ(4)
[

ZI(G̃RR I − eIBξB + pA
I ξ̃A) + FI(G

I
RR + mI

BξB − qIAξ̃A)
]

,

(6.16)

15Note that combinations of scalars (ξI , ξ̃I) which is dual to the massive tensors given by (6.8) precisely

drops out of the expression for P
3 as is required for consistency. Alternatively one can formulate the

supergravity in a redundant form where both scalar degrees of freedom together with antisymmetric tensors

are kept [62].
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IIA IIB

eAI massive AA
µ massive AI

µ

mI
A massive AA

µ massive C̃A
2

pA
I massive C̃I

2 massive AI
µ

qAI massive C2I massive C2A

Table 4: Physical effect of different charges.

where

G− = GI
RRαI + G̃RR JβJ + dA+

0 , V +
ξ =

(

ξ̃A

−ξB

)

, V −
RR =

(

G̃RR I

−GJ
RR

)

, (6.17)

and GI
RR, G̃RR I again denote the RR-fluxes.

Let summarize the role the different Q-charges take in the low energy effective theory.

Generically they always give a mass to some of the light modes. Depending on which

charge is under consideration in which type II theory either a set of vector fields or a set

of antisymmetric tensor naturally becomes massive. The different cases are summarized in

table 4. Of course it is always possible to rotate to a symplectic basis where all massive

modes are either vectors or tensors. The most appropriate formulation of the supergravity

which occurs as the low-energy effective theory for the case at hand is the one given in

ref. [62]. Here all vectors and tensors are kept simultaneously and the symplectic covariance

of the theory becomes manifest. A reformulation of the results obtained here in terms of

the formalism of [62] will be presented elsewhere.

Finally we come to the issue of mirror symmetry. Comparing tables 2 and 3 results in

a condition purely on the light spectrum. First of all the dimensions of the finite subspaces

defined in (5.18) have to agree on a mirror pair of six-manifolds (M6, M̃6) or in other

words b+(M6) = b−(M̃6) and vice versa. Furthermore the kinetic terms in the Lagrangian

have to coincide. Here we only computed explicitly the Kähler potential of the two Kähler

geometries in (5.23). We see that mirror symmetry requires the identification [12]

Φ+(M6) ↔ Φ−(M̃6) , Φ−(M6) ↔ Φ+(M̃6) , (6.18)

or equivalently the exchange

XA ↔ ZI , FA ↔ FI . (6.19)

Comparing also the kinetic terms for the RR scalars is straightforward and results in the

identification

ξA ↔ ξI , ξ̃A ↔ ξ̃I . (6.20)

Finally comparing the Killing prepotentials (6.9), (6.10) with (6.15), (6.16) requires an

identification of the charges

eAI ↔ eIA , qAI ↔ qIA , mI
A ↔ −pA

I , (6.21)
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and the RR-fluxes

GA
RR ↔ −GI

RR , G̃RR A ↔ −G̃RR I . (6.22)

Thus we see that within the class of compactifications on manifolds with SU (3) × SU (3)

structure mirror symmetry can be realized.

The final task of this paper is to ask to what extend the compactifications just dis-

cussed correspond to bona fide geometrical backgrounds. In particular, can one always

find geometries with truncations satisfying (6.3), and, if not, how does this connect to the

discussion in the recent literature.

7. Non-geometric backgrounds

In our discussion thus far, we have simply assumed that there are suitable SU (3)× SU (3)

manifolds with truncations satisfying the differential conditions (5.27) in the case of the

dual of H3-flux, or, more generally, conditions (6.1). In the following, we will argue that

this is generically not the case. Instead, following recent ideas generalizing the notion of a

string background, one must consider “non-geometrical” compactifications [23]–[44].

The classic examples [27, 28, 26] of such backgrounds are tori, and orbifolds thereof,

with NS three-form fluxes and the corresponding backgrounds related by successive T-

duality transformations. Some of these backgrounds were shown to be non-geometric [24].

The corresponding effective theories were discussed in [33, 25]. In refs. [23] it was argued

that these backgrounds correspond to non-commutative (and non-associative) geometries.

The relation between these different view points has recently been clarified in ref. [42]. Note

also that essentially two types of non-geometrical backgrounds have been identified: those

which are locally geometrical but have no sensible global geometrical description; and those

which are not even locally geometrical [35, 40]. Specific examples of the former type can

be realised using the concept of a T-fold, introduced in ref. [24]. These backgrounds locally

look like manifolds but the transition functions between local patches are generalised to

include T-duality transformations.

Let us first give a suggestive argument as to why geometrical compactifications are not

sufficient to realize all the charges in Q. Suppose for this discussion that the relations (6.3)

are exact and not up to terms which vanish under the symplectic pairing (5.19). Given that

the exterior derivative maps p-forms to (p+1)-forms, we find that, whatever truncation we

choose, the charge matrix Q defined in (6.3) cannot be completely generic. This suggests

that in order to generate all the allowed elements in Q one must consider non-geometrical

compactifications. The argument is a follows. Recall that Φ± are expanded in terms of

truncation bases Σ+ and Σ− as in (5.20). From (2.21) we see that, whenever c‖ 6= 0, the

structure Φ+ contains a scalar. This implies that at least one of the forms in the basis

Σ+ contains a scalar. Let us call this element Σ+
1 , and take the simple case where the

only non-zero elements of Q are those of the form QÎ
1 (where Î = 1, . . . , 2b− + 2). Thus

dΣ−

Î
= QÎ

1Σ+
1 and so if QÎ

1 6= 0 then dΣ−

Î
contains a scalar. But this is not possible if d

is an honest exterior derivative, acting as d : Λp → Λp+1. The same is true if c‖ in (2.21) is

zero. In this case, there may be no scalars in any of the even forms Σ+, and for an “honest”
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d operator, there should be then no one-forms in dΣ+. But we again see from (2.21) that

Φ− contains a one-form, and as a consequence so do some of the elements in Σ−.

One way to generate a completely general charge matrix Q in this picture is to consider

a modified operator d which is now a generic map d : U+ → U− which satisfies d2 = 0

but does not transform the degree of a form properly. In particular it can map a p-

form to a (p − 1)-form. Of course, d does not act this way in conventional geometrical

compactifications. One is thus led to conjecture that to obtain a generic Q we must

consider non-geometrical compactifications. One can still use the structures (6.3) to derive

sensible effective actions, expanding in bases Σ+ and Σ− with a generalised d operator,

but there is of course now no interpretation in terms of differential forms and the exterior

derivative.

As a concrete simplified example of the general ideas discussed above we consider the

case of a reduction on T 6 with H3-flux and the related twisted tori and T-dual compact-

ifications, following [27, 28, 26, 24, 33]. Collectively we refer to such compactifications as

“generalised twisted tori”. We will introduce SU (3)× SU (3) structures on classes of these

backgrounds and calculate the corresponding charge matrices Q. More generally, refs. [25]

(see also [40, 66]) looked at N = 1 orientifolds of such backgrounds, calculating the corre-

sponding effective superpotentials. In this subsection we will review the structure of these

generalised T 6 reductions. In the following subsection we calculate the corresponding Q
matrices for our putative SU (3) × SU (3) structures and finally in the last subsection we

compare with the superpotential of ref. [25].

7.1 Generalised twisted tori

A Calabi-Yau manifold in the SYZ limit can be viewed as a three-torus T 3 fibred over some

base manifold [67]. In this limit mirror symmetry acts as T-duality on the T 3 fibre while

leaving the base unchanged. With this prescription one can explicitly construct the mirror

duals of a Calabi-Yau manifold with three-form flux H. The T 6 examples we discuss here

are the trivial case of such a construction.

Let us start with a T 6 compactification where ea are a set of one-forms defining the

torus and where we include NS flux H = 1
6Habce

a ∧ eb ∧ ec. The action of T-duality in this

background has been considered by many authors. Heuristically, following the notation of

ref. [25], it can be represented as follows

Habc
Ta←−−→ fa

bc
Tb←−→ Qab

c
Tc←−→ Rabc . (7.1)

In the SYZ formulation the different terms in (7.1) correspond to the situation where H

has one, two or three ‘legs’ on the T 3-fibre. An H with one leg on the fibre corresponds

to electric NS-fluxes and has already been considered in [11]. This leads to a geometry

described by the parameters fa
bc, and no H-flux. Geometrically we have a twisted torus.

This is a parallelisable manifold spanned by one-forms ea, which are now not closed, but

satisfy instead

dea = fa
bc eb ∧ ec , (7.2)

with fa
bc constant. Specifically, suppose only one element of Habc is non-zero, and has

only one leg on the T 3 fibration. After three T-dualities, we get a new manifold which is
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a non-trivial T 3 fibration. The non-trivial part is a S1 fibration over T 2, where the S1 is

the T-dual of the fibre direction along which H was non-zero.

Now suppose H has two legs along the T 3 fibration. One can again explicitly perform

a local T-duality leading to a background with non-trivial geometry and H-flux. However,

this cannot be done globally: there is no good global splitting between metric and B-field.

Instead, one can interpret the non-trivial part of the compactification as a T 2 bundle over

S1 where there is mondromy that mixes the B-field and metric of the T 2: the bundle is

being patched by an element of T-duality. As such it is a T-fold and is non-geometric.

Nonetheless, the reduction can be characterized by a set of parameters Q which are related

to the local metric and B-field.

Finally, the last step in the chain (7.1) is purely conjectural, since the metric does not

have the isometry to perform such T-duality, and therefore the Buscher rules cannot be

applied. It corresponds to an H-flux with all three legs on the fibre. In this case, [35]

argues that there is not even a good local description of the geometry, though it does make

sense as a conformal field theory. One way [25] to see that space-time points might not be

well defined, is to note that the mirrors of D0-branes probes would be D3-branes wrapping

a T 3 fibre with NS flux on the world-volume and these do not have simple moduli spaces

because of the problem of satisfying the Bianchi identity dF = H3. In this sense, the

parameters R have no geometrical interpretation. Note that by an abuse of nomenclature,

we will often refer to all the parameters H, f , Q and R as generalised “fluxes”.

There are various ways to view what is encoded in these generalised fluxes. In terms

of the corresponding low-energy effective theory they are related to the gauge algebra of

the vector fields, coming from the symmetries of the backgrounds. One finds [68, 32, 33,

27, 24, 35, 25]

[va, vb] =HabcX
c + f c

abvc,

[va,X
b] = − f b

acX
c + Qbc

avc,

[Xa,Xb] =Qab
cX

c + Rabcvc,

(7.3)

where in the case of a geometrical compactification (Q = R = 0) the va generators come

from the Killing vector symmetries, while Xa are associated with gauge transformations of

B. Note that the algebra of diffeomorphisms parametrized by vectors and gauge transfor-

mations parametrized by one-forms is essentially the same as the Courant bracket.16 From

this perspective, in the geometrical case, one can view (7.3) as the Courant bracket algebra

of Killing vectors and gauge transformations. Since, for instance, the gauge transformation

of B are Abelian, one can see that the Q and R fluxes cannot arise in any convention

geometrical way. Note that the Jacobi identities for the algebra then put constraints on

fluxes.

An alternative picture is that the corresponding generalised geometry can be written

in terms of a basis V A of O(6, 6) vectors, just as for a twisted torus there is a basis of

left-invariant one-forms ea, or equivalently vectors ṽa. Just as the structure constants

fa
bc appear in the Lie algebra of the ṽa, so the generalised fluxes appear in the Courant

16The Courant bracket between two elements x + ξ and y + η in E is given by [x + ξ, y + η] = [x, y] +

Lxη −Lyξ − 1
2
d(ixη − iyξ) where [x, y] is the usual Lie bracket of vector fields and Lx is the Lie derivative.
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bracket algebra of the V A. Note that this is a complementary picture to the one just given:

on a twisted torus the right-invariant vector fields va generate the isometries, while the

left-invariant vector fields ṽa are used to define the metric.

A third picture, useful when relating to SU (3) × SU (3) structures is to ask how the

fluxes enter the exterior algebra of the forms. For a geometrical background it is natural

to consider forms of the type ω = e−Bωm1...mpe
m1 ∧ · · · ∧ emp with ωm1...mp constant. We

include the twisting by B so that ω is an element of the generalised spinor bundle S(E).

Acting with d on ω we find

dω = −H ∧ ω + f · ω (7.4)

where (f · ω)m1...mp+1 = fa
[m1m2|ωa|m3...mp+1]. The natural non-geometrical extension is

then to an operator D such that [25]

Dω := −H ∧ ω + f · ω + Q · ω + Rxω, (7.5)

where Q· and Rx are defined by

(Q · ω)m1...mp−1 = Qab
[m1

ω|ab|m2...mp−1] , (Rxω)m1...mp−3 = Rabcωabcm1...mp−3 . (7.6)

Requiring D2 = 0 implies that same conditions on fluxes as arose from the Jacobi identities

for (7.3). The connection D appears in the Bianchi identities for the RR fluxes, which in the

presence of geometric and non-geometric fluxes read DF = 0. Note that in our analysis

the equality in (7.5) will be relaxed to an equivalence up to terms vanishing under the

symplectic pairing (5.19).

7.2 Generalised twisted tori and SU (3) × SU (3) structures

We will now try and relate the fluxes (7.1) in the generalised twisted tori examples to

our generic SU (3) × SU (3) reductions discussed in section 6. This will allow us to see

how the charges Q can be realised in terms of the fluxes and hence, in this particular

example, which terms in Q come from conventional compactifications and which from

non-geometrical backgrounds.

Let us consider first an SU (3) structure on the generalised twisted torus manifold.

In the geometrical case, the manifold is parallelisable and there is non-trivial H-flux. To

define the SU (3) structure we introduce three complex one-forms ei (with conjugates ēī).

In order to keep the discussion tractable we will assume that there is Z3 symmetry under

permutation of the three ei. In the simple case where the manifold is T 6 this implies that

we are considering the product T 2 × T 2 × T 2 and assuming the metric and H-field are the

same on each T 2.

In terms of SU (3) structure this means we fix identical complex structures and Kähler

forms on each T 2 (or rather in terms of each ei). There are then two moduli: the complex

Kähler modulus t and complex structure τ of each T 2. We thus have, as in section 5.1

Φ+ = e−Bfl
eitλ , Φ− = e−Bfl

Ω1
τ ∧ Ω2

τ ∧ Ω3
τ , (7.7)

where λ = 2iδij̄e
iēj̄ and Ωi

τ = 1
2 (1 + τ)ei + 1

2(1− τ)ēī define the complex structure on each

T 2, while dBfl = H. We are expanding in a basis of even forms

Σ+ = (ω0, ω1, ω̃
0, ω̃1) = e−Bfl (

1, 1
6λ2, 1

6λ3, λ
)

, (7.8)

– 30 –



J
H
E
P
0
4
(
2
0
0
7
)
1
0
1

and of odd forms

Σ− = (α0, α1, β
0, β1) = e−Bfl

(Re Ω3,Re χ3,− Im Ω3,−3 Im χ3) (7.9)

where

Ω3 = 2
3ǫijke

iejek , χ3 = 4
3 (ē1̄e2e3 + cyclic) =: 2

3 ρi
jk δil̄ ē

l̄ejek . (7.10)

The components of ρ satisfy ρ1
23 = −ρ1

32 = ρ2
31 = −ρ2

13 = ρ3
12 = −ρ3

21 = 1, with the

others being zero. The forms satisfy additionally (5.21).

The fluxes (7.1) of the non-trivial geometry are encoded in the H-flux and the twisted

geometry (7.2). Specifically, respecting the Z3 symmetry we have

H3 = dBfl = H0 ReΩ3 + H1 Reχ3 − H0(− Im Ω3) − H1(−3 Im χ3) , (7.11)

while decomposing (7.2) in terms of holomorphic and antiholomorphic indices, and impos-

ing the Z3 symmetry, gives

dei = 1
6Aρi

jk ejek + 1
6Bρij

k δjl̄ ē
l̄ek + 1

6Cǫijk δjl̄ δkm̄ ēl̄ēm̄. (7.12)

Using (7.11) and (7.12) to compute the exterior derivatives of the elements of Σ+, and

expressing them as linear combinations of the forms in Σ− we obtain an expression for the

charge matrix Q in terms of the structure constants A, B and C and the H-fluxes HI and

HI . We get
HI = eI0 , HI = mI

0 ,

6A + B̄ = 3p1
1 + iq11 ,

C = 1
6p0

1 + 1
6 iq01 ,

(7.13)

and qI0 = pI
0 = eI1 = mI

1 = 0.17 The charge matrix is therefore

Q =











0 Re C H1 0

0 1
18Re D H2 0

0 Im C H1 0

0 Im D H2 0











, (7.14)

where D = 6A+ B̄. This implies that only half of the charges are turned on via H-flux and

geometric fluxes. We therefore expect the other half of the charges QÎ1, QÎ4 (Î = 1, . . . , 4)

to correspond to non-geometric fluxes. There are as many Qab
c fluxes respecting the Z3

symmetry as there are fa
bc, and the same is true for Rabc and Habc. It is reasonable to

expect that turning them on would complete the entries of the charge matrix Q. Let us

show that this is indeed the case.

Let us use the operator D in (7.5) to define the fluxes Q and R. Replacing d in (6.1)

with D we find that the full charge matrix is then given by

Q =











R1 Re C H1
2
3Im C̃

R2
1
18Re D H2

2
9 Im D̃

R1 ImC H1 2
3Re C̃

R2 Im D H2 1
6Re D̃











, (7.15)

17Note that for our choice of SU(3) structure not all fluxes of (7.12) appear but only the combination

B̄ + 6A.
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where D̃ = Ã + ¯̃B and Ã, B̃ and C̃ are defined in direct analogy with A, B and C, while

RI , RI are the components of R-flux defined in analogy with (7.11). We see, as promised,

that the missing half of the Q’s are indeed given by the non-geometric fluxes Q and R. We

conclude that the charge matrix Q represents geometric as well as non-geometric fluxes,

and all of the elements of Q can in principle be generated by an appropriate H, f , Q

or R-flux. Note that the flux parameters are not all independent but have to satisfy the

constraint (6.6). The same constraint also arises from requiring D2 = 0. In this particular

case, using the general expression (6.7), we have ten independent charges.

We can also generalize this calculation to the case of an SU (3) × SU (3) structure.

From the discussions in the previous sections, we expect this setup to accommodate more

of the Q charges in a purely geometric background. We will see that this is indeed the

case.

Specifically we assume that there is an SU (2) structure on the generalised T 6 again

with Z3 symmetry. Using the same forms ei, let us choose e3 to be the holomorphic vector

of the SU (2) structure. In the language of eq. (2.21), we are taking c‖ = 0, c⊥ = 1 and

v+iv′ = e3. The SU (2) structure is then equivalent to two SU (3) structures, defined by the

holomorphic vectors (e1, e2, e3) and (ê1, ê2, ê3) = (ē1̄, ē2̄, e3). The Z3 acts by a simultaneous

permutation of (e1, e2, e3) and (ê1, ê2, ê3). We can again find suitable bases Σ+ and Σ−

preserving the Z3 symmetry and (5.19) and (5.21). The bases with the minimum number

of elements are given by

Σ+ = e−Bfl











2Re (ω2 + ξ2)

8 Im ω2 − 4 iRe (ω2 + ξ2)e
3ē3

−4iRe (ω2 − ξ2)e
3e3̄

−2
3Re (ω2 − ξ2) + 2

3Im ω2e
3e3̄











, Σ− = e−Bfl











2Re e3

−2Im e3 + Re e3j

−Im e3j2

−1
3Re e3j2 + 4

3Im e3j











,

where wedge products are understood and where ω2 = e1 ∧ e2, χ2 = ē1̄ ∧ e2, and j =

2i(e1 ∧ ē1̄ + e2 ∧ ē2̄). Note that, with Bfl = 0, there are neither scalars, nor six-forms in the

basis of even forms. In addition, unlike in the SU (3) case with Bfl = 0, it is not possible

to find a basis of forms of pure degree.

The “metric fluxes” are introduced via the exterior derivatives of the one-forms, given

by (7.12). In the symmetric setup, the structure constants are again proportional to ǫijk

and ρi
jk. As before the H-flux, comes from the twisting of the basis forms by e−Bfl

. Since

there are no scalars in the basis of even forms, we should not expand H3 in the basis of

odd forms, but rather simply calculate the parameters HÎÂ =
∫ 〈

H3 ∧ Σ−

Î
,Σ+

Â

〉

.

The structure constants and H-flux generate the following charge matrix

Q =











1
12Re E+ 1

72 ImF + h+
i 3h−

i −1
6Re E− + 4h0

i

− 1
12Im E+ 1

24Re F + h+
r

1
12 ImE− + 3h−

r
1
6Im (2E− + F ) + 4h0

r

0 0 0 0

0 1
108 Im (3E+ − E−) 1

9Im F −2
9Re (E+ + F )











,

where we have defined

E± = A + C ± 2B , F = −A + C. (7.16)
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The parameters A, B, and C are defined in (7.12), and h±,0
r,i are the different H-flux

charges that can be turned on. If we expanded H3 in 20 independent three-forms, only six

combinations of them would contribute to the charges. Explicitly,

H3 = 1
6h±

r Re (ω2 ± ξ2)Re e3 + 1
6h±

i Re (ω2 ± ξ2)Im e3 + h0
rIm (ω2)Re e3

+ h0
i Im (ω2)Im e3 + . . .

(7.17)

where the + . . . are pieces that do not contribute to the charge matrix. We see that in the

SU (2) case, 11 out of the 16 charges can be turned on via geometric fluxes, as oposed to

8/16 for the SU (3) case. The remaining 5 charges can be turned on by Q- and R-fluxes.

Note once more that there are (six) conditions on the charges coming from constraint (6.6).

For the charge matrix (7.16), two of these are automatic, while one needs to impose the

other four.

We conclude that in order to generate non-zero entries for the full charge matrix we

need geometric as well as non-geometric fluxes both in the SU (3) and in the SU (2) case.

However, in the latter the number of charges that can be turned on via geometric fluxes is

generically larger than in the former.

7.3 Superpotentials

We can further support the claim that a generic Q contains geometric and non-geometric

fluxes by computing the superpotentials (6.9) and (6.15) for a given Q, and comparing

to that of ref. [25]. Starting from IIA and IIB compactifications on the Z3 symmetric

T 2 × T 2 × T 2 torus with an SU (3)-structure, flux and O6 and O3 planes respectively, the

authors of [25] used T-duality arguments to propose a generic form for the superpotential

valid also for dual non-geometrical compactifications. The superpotentials are functions of

the dilaton S, two further N = 1 moduli X and Y and the fluxes H, f , Q, and R. They

have the generic form

W = P1(X) + SP2(X) + Y P3(X) , (7.18)

where P1,2,3(X) are cubic polynomials with the coefficients being the (geometric and non-

geometric) NS and RR fluxes. P1 depends on RR fluxes only, while the NS fluxes generate

P2 and P3. Each type of flux contributes to a term with a given dependence on the moduli.

For example, the term proportional to SX2 is proportional to Q-flux in type IIA, while it

corresponds to H-flux in type IIB.

Let us compare (7.18) with the superpotential obtained from the type IIA and type

IIB superpotentials given in (4.19) and (4.20), for an O6 and an O3 orientifold projection

respectively. The N = 1 supersymmetry preserved by these projections correspond to

α = π/4, β = π/2, giving

WIIA/O6 =

∫

〈

Φ+,dΠ−
〉

, Π− := A−
0 + iRe (CΦ−) , (7.19)

WIIB/O3 = −
∫

〈

Φ−,dΠ+
〉

, Π+ := A+
0 + iRe (e−φΦ+) , (7.20)

where A±
0 are the RR potentials defined in (3.5), (3.6) with field strength G± defined

in (4.10). In ref. [48] it was shown that Π± are the correct N = 1 Kähler coordinates for
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the orientifolds. C is a ‘compensator’ field proportional to e−φ (for the precise definition

see [48]).

Recall that for the symmetric (T 2)3 setup, the Φ± corresponding to a single SU (3) are

given by (7.7) with moduli t and τ . After the O6 orientifold projection t remains an N = 1

modulus (which is commonly called T ) while τ is constrained to be real and it combines

with a RR scalar ξ1 to form the N = 1 modulus U = ξ1 + iCτ2 which enters Π−. The

second variable is S = ξ0 + iC. In type IIB, the O3 projection requires t to be real, and

the N = 1 moduli are given by U = τ , T = ξ1 + ie−φt2 and S = ξ0 + ie−φ (see [48] for

further details).

Substituting these expressions and using the bases (7.8) and (7.9) and the general

expressions (6.3) and (6.4) we find

WIIA/O6 =U
[

i(3e00 − e10) − T (3p0
1 − p1

1) − 3iT 2(3e01 − e11) − T 3(3p0
0 − p1

0)
]

+ S
[

i(e00 + e10) − T (p0
1 + p1

1) − 3iT 2(e01 + e11) − T 3(p0
0 + p1

0)
]

.
(7.21)

for type IIA, and

WIIB/O3 =T
[

3i(e01 + e11) + U(3m0
1 + m1

1) − 3iU2(3e01 − e11) − U3(m0
1 − m1

1)
]

+ S
[

− i(e00 + e10) + U(m1
0 + 3m0

0) − iU2(3e00 − e10) + U3(m0
0 + m1

0)
]

.

(7.22)

for type IIB.

These superpotentials are symmetric under the mirror map (6.18). Furthermore, they

contain all the terms in (7.18) depending on NS fluxes, namely P2 and P3, if we identify

X = T and Y = U for type IIA, and X = U and Y = T for type IIB. The first lines

of (7.21) and (7.22) correspond to the terms in P2, while the second line to those in P3.

In the IIA expression of ref. [25], the terms with no power of T (appearing first on the

first and second lines of (7.21), proportional to eI0) come from H-flux. The terms linear

in T come from f -fluxes and the ones quadratic in T from Q-fluxes, while the cubic ones

involve the conjectured R-fluxes. This is in perfect agreement with (7.13) and (7.15), where

we identified eI0 charges as H-flux, pI
1 as f -flux, eI1 as Q-flux and pI

0 as R-flux. Note

that the fluxes m and q drop from the IIA/O6 superpotential (or more precisely, they are

projected out by the orientifold projection). In type IIB with an O3 projection, all the

terms containing the modulus S correpond to H-fluxes, while the ones with a T modulus

are generated by Q-fluxes. (f and R fluxes are not allowed by an O3 projection.) This

is again consistent with (7.13), (7.15) where mI
0 has been identified with HI , while mI

1

with Q-flux.

From these examples, we conclude that the general matrix Q contains all possible NS

fluxes. Note that the mapping between the charges (e,m, p, q) and the fluxes (H, f,Q,R)

depends on the choice of basis (7.8) and (7.9). However, the fact that some of these fluxes

cannot be obtained from an honest exterior derivative (or from purely geometric fluxes) is

a basis independent statement.
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The form of the generalised derivative (7.5) suggests that both Q and R fluxes are

associated with deformations of the usual exterior algebra. However, we also know that

backgrounds with non-trivial Q-fluxes are still locally geometrical. The non-geometry only

appears globally. Thus one might still expect the exterior algebra to be undeformed working

on a patch. A possible resolution is that (7.5) is too strong for two reasons. First it gives

the action of D on forms of pure degree, whereas we have already seen generically we

are interested in basis forms of mixed degree. Secondly, for our SU (3) × SU (3) structure

we also only require an equivalence “∼” up to terms which vanish under the symplectic

pairing (5.19). It would be interesting to clarify if the exterior derivative actually needs

to be modified to define Q given these two subtleties. For now, let us simply connect

the analysis here to the discussion in [42], which will provide some evidence that such a

resolution is possible.

In section 5.1 we observed that the effect of the H-flux was to twist the geometrical

basis of forms so that, for instance, ω = e−Bfl
ω(0), which were forms of mixed degree. It

is natural to ask if, for instance, the Q-charge can also be realised as a twisting of the

geometrical basis, again giving forms of mixed degree. This can indeed be done, but the

price to pay is higher than for H. Under two T-dualities along the B-field directions, the

B-transform is mapped to a β-transform [42] (see also [69]), where βab is a bivector along

the T-dualized directions. Defining a new basis ω = eβxω(0) one would then expect that the

corresponding exterior algebra encodes the Q-charges, without modifying the d operator.

This is fine locally but globally the geometrical picture breaks down. Non-trivial H-flux

corresponds to patching the bundle E with non-trivial transformations Bα = Bβ + dAαβ

on the intersection Uα ∩ Uβ . The pure spinors Φ± are global sections of the twisted spin

bundle S(E). In the case of a torus fibration with H-flux there are B-transformation

monodromies on the T 3 fibre as one transverses a loop in the base. However, since Φ±

are global sections they are invariant under these monodromies. For the dual T 3-fibred

background, the patching is by β-transformations, that is T-dualities on the T 3 fibres. Such

a background is thus not globally geometrical. There are T-duality-valued monodromies,

which have, for instance, the effect of changing the dimension of a brane [24, 42] and the

type k of a pure spinor.18 However, the new background still leads to a supersymmetric

effective action, which means there is still a notion of a global SU (3) × SU (3) structure.

In other words there is a unique pair of pure spinors Φ± on each local geometrical patch.

In going between patches these are related by T-duality transformations, in such a way

that they are invariant under the monodromies. Expanding in terms of basis forms Σ+

and Σ−, this implies that each element of the basis should similarly be globally defined in

this generalised “bundle” patched by T-duality. The usual exterior derivative acting on the

basis elements on each local geometrical patch should encode the Q-fluxes, and the local

expressions for the superpotential and so on will still hold. This is one way of suggesting

why the geometrical SU (3)×SU (3) expressions give the correct low-energy effective theory

in the case of non-geometrical compactifications with Q-flux.

18A pure spinor can aways be written as eAθ1
∧ · · · ∧ θk, where A is a complex two-form and θi are

complex one-forms. The integer k is the ”type” of the pure spinor.
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In summary, we have shown that a generic matrix Q contains geometric as well as

non-geometric NS fluxes, by calculating Q in terms of the fluxes H, f , Q and R in the

context of generalised twisted-tori. We further show that, in the orientifold case, this then

reproduces the superpotentials given in [25]. Remarkably we note that treating the exterior

derivative operator in (6.1) as a generalised linear operator on the bases forms Σ+ and Σ−

reproduces the conjectured non-geometrical superpotentials even when the background is

not even locally geometrical.

8. Conclusions

In this paper we completed our study of type II compactifications on manifolds with

SU (3) × SU (3) structure by further generalizing the formalism developed in ref. [45]. We

first decomposed the ten-dimensional fields under SU (3)× SU (3) projecting out all repre-

sentations (3,1), (1,3) and their complex conjugates. This corresponds to a reorganization

of the ten-dimensional fields in terms of ‘N = 2 multiplets’ without performing a Kaluza-

Klein reduction. In this ten-dimensional framework we computed the equivalent of the

gravitino mass matrix SAB and the N = 1 superpotential W for type IIA and type IIB.

These have the same functional expression in terms of the two pure spinors Φ± and RR

field strengths G± as their SU (3) structure counterparts found in [45], and are in particular

mirror symmetric under a chirality exchange of the pure spinors and RR fluxes.

We discussed the conditions for a consistent reduction where the infinite tower of

Kaluza-Klein states is truncated to a set of light modes of the compactification. Such

conditions arise from demanding that the local special Kähler geometry of the untruncated

theory descends to the moduli space of truncated modes. (Note the question of when such

truncations exist remains an open problem, see also [50].) Upon meeting these conditions,

the resulting theory is a four-dimensional N = 2 supergravity, with generically massive an-

tisymmetric tensors. For a specific choice of truncation, we precisely reproduced the type

IIA dual of type IIB supergravity on Calabi-Yau threefolds with magnetic NS three-form

fluxes. This theory was missing in [11, 45] but can be found when the compactification

manifold has SU (3) × SU (3) instead of SU (3) structure. The crucial new ingredient is

the existence of all odd forms including one- and five-forms which are absent in SU (3)

structure compactifications. This allows one to generalise previous Ansätze for the exte-

rior derivatives of the basis forms, involving a doubly symplectic charge matrix Q, which

encodes the full set of NS fluxes (three-form flux H3 and torsion).

For general SU (3) × SU (3) structure compactifications the low-energy effective type

IIA and type IIB theories are perfectly mirror symmetric under exchange of the “moduli”

XA and ZI parameterising the bundles of even and odd pure spinors (some of these are

massive and therefore not moduli in the strict sense), an exchange of the RR fluxes GRR A

and GRR I, and a symplectic transposition of the charge matrix Q. The latter maps in

particular the “magnetic” fluxes mI
A to the new set of fluxes pA

I . The question of the

existence of manifolds of SU (3)×SU (3) structure was not adressed in this paper. However,

the restoration of mirror symmetry seems to be a strong argument in its favor.
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In spite of the fact that SU (3) × SU (3) structures (or the existence of one- and five-

forms in the basis of odd forms) allow one to turn on more components of Q than those

allowed by pure SU (3) structures, we showed that entirely geometric fluxes (H3 plus tor-

sion) do not suffice to generate all components of Q. The extra components were shown

to be associated to non-geometric fluxes, which arise in certain standard cases by perform-

ing successive T-dualities on backgrounds with purely geometric fluxes. A general charge

matrix corresponds to a generic map from the truncated space of even forms to the space

of odd forms. In the analysis of [25] it corresponds to a generalised nilpotent operator

D = −H ∧+f ·+Q ·+Rx acting on the basis of forms. The nilpotency condition translates

into quadratic constraints on Q that leave (2b+ + 3)(b− + 1) (for b+ > b−) independent

components in the charge matrix.

The non-geometrical fluxes Q are associated with a background which is locally geomet-

rical but globally is patched using T-duality transformations. As such it can be interpreted

as a “T-fold” following [24]. The non-geometrical fluxes R correspond to backgrounds

which are not even locally geometrical. These have been discussed in [35]. In the former

case, supersymmetry implies that one can still identify a local SU (3)×SU (3) structure. In

fact, given that T-duality transformations by which the background is patched should not

break supersymmetry, we would expect the SU (3)×SU (3) is globally defined, in the sense

that there are no monodromies. This will not however be true of the metric and B-field,

since there is no longer a global “polarization” (in the language of [24]). For instance,

there are generically monodromies under which D0-branes become D2-branes and so on.

Remarkably, we find that while derived using the assumption that we had a geometrical

background, our expressions such as that of the superpotential seem to correctly reproduce

the gaugings or masses coming from such non-geometric fluxes. The only modification is

to allow a generalised exterior derivative operator or, in the truncated version, a general

charge matrix Q. While in the case of Q fluxes this might be assumed to be related to

the local geometrical structure, the expressions also appear to hold for R-fluxes where the

background is not even locally geometrical.
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Minasian, Thomas Grimm, Sakura Schäfer-Nameki, Wati Taylor, Alessandro Tomasiello,

Silvia Vaula and Brian Wecht.

J.L. thanks David Gross and the organizers of the KITP workshop “Geometrical Struc-

tures in String Theory” and M.G. thanks the Institute for Mathematical Sciences at Im-

– 37 –



J
H
E
P
0
4
(
2
0
0
7
)
1
0
1

perial College for hospitality and financial support during initial and final stages of this

work.

A. Spinor conventions

For convenience, in this appendix we will summarize our conventions for O(6, 6) spinors

and identify the various relations to conventional Spin(6) representations. We start by

defining our conventions for Spin(6) spinors.

A.1 Spin(6) spinors

The Clifford algebra Cliff(6, 0; R) is generated by the gamma matrices γm satisfying

{γm, γn} = 2gmn. (A.1)

where g is a positive definite six-dimensional metric. Let ǫg be an orientation compatible

with g (and thus fixed up to a sign). We can define the standard intertwiners

γ†
m = AγmA−1, −γT

m = C−1γmC, −γ∗
m = D−1γmD, (A.2)

and the chirality operator γ(6) = 1
6!ǫ

m1...m6
g γm1...m6 . Note one can always choose a repre-

sentation where A = C = D = 1 and the γm are imaginary and anti-symmetric. For a

spinor θ it is useful to define

θ̄ = θ†A, θt = θTC−1, θc = Dθ∗. (A.3)

We also define chiral spinors by γ(6)θ± = ∓iθ± with θc
± = θ∓.

A.2 Spin(6, 6) spinors

Let Π,Σ, . . . denote O(6, 6) vector indices on the generalised bundle E. (For simplicity

here we will assume E = F ⊕ F ∗.) The Clifford algebra Cliff(6, 6; R) is generated by the

gamma matrices ΓΣ satisfying

{ΓΠ,ΓΣ} = 2GΠΣ, (A.4)

where G is the O(6, 6) invariant metric (2.4). The O(6, 6) spinors χǫ ∈ S can be chosen to

be Majorana-Weyl and we write χ±
ǫ ∈ S± for the two chiralities. As usual one can define

the intertwiner −ΓT
Σ = C−1ΓΣC. Using C one can define a spinor bilinear (which defines

the Mukai pairing) by

ψt
ǫ · χǫ := ψT

ǫ C−1χǫ. (A.5)

Since CT = −C this is actually defines a symplectic structure. The Majorana condition

uses the intertwiner Γ∗
Σ = D̃−1ΓΣD̃, and reads χc̃

ǫ := D̃χ∗
ǫ = χǫ.

There are a number of different sub-groups of O(6, 6) under which we can decompose

the spinor representation. First, the decomposition E = F ⊕ F ∗ defines a GL(6, R) ⊂
O(6, 6) group. A vector V ∈ E can then be decomposed into an ordinary vector and
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one-form V = x + ξ. Furthermore, under this map S is isomorphic to the bundle of forms

S ≃ Λ∗F ∗ (or for chiral spinors S+ ≃ ΛevenF ∗ and S− ≃ ΛoddF ∗)

χǫ ∼ χ = χ0 + · · · + χ6, (A.6)

where χp ∈ ΛpF ∗ and the isomorphism depends on a choice of volume form ǫ (though is

independent of the sign of ǫ). In this basis, the metric G has the form (2.4) and we can

decompose the gamma matrices as

V ΣΓΣ = xmΓ̌m + ξmΓ̂m (A.7)

so that (A.4) becomes

{Γ̌m, Γ̌n} = {Γ̂m, Γ̂n} = 0, {Γ̌m, Γ̂n} = 2δn
m. (A.8)

Under the isomorphism (A.6), the Clifford action on χ is given by

(V ΣΓΣ)χǫ ∼ ixχ + ξ ∧ χ. (A.9)

The spinor bilinear decomposes into the Mukai paring on the constituent forms

(ψt
ǫ · χǫ) ǫ =

〈

ψ,χ
〉

=
∑

P

(−)[(p+1)/2]ψp ∧ χ6−p. (A.10)

The next subgroup one is interested in is the O(6) × O(6) ⊂ O(6, 6) structure on E

defined by a choice of metric g and B-field. Specifically in terms of the gamma matrices

one can use g and B to change basis

Γ±
m =

1√
2

(

Γ̌m + (Bmn ± gmn)Γ̂n
)

(A.11)

so the Clifford algebra becomes

{Γ+
m,Γ−

n } = 0, {Γ+
m,Γ+

n } = 2gmn, {Γ−
m,Γ−

n } = −2gmn. (A.12)

In this basis G is block diagonal. Clearly Γ± generate two different Spin(6) subgroups.

We can correspondingly decompose the Clifford algebra Cliff(6, 6; R) ≃ Cliff(6, 0; R) ×
Cliff(6, 0; R). The spinor bundle is then a product S = S1 ⊗ S2 with χǫ = θ1 ⊗ θ2 and

gamma matrices

Γ+
m = γm ⊗ 1, Γ−

m = γ(6) ⊗ γm, (A.13)

where γm are defined above. The intertwiners C and D̃ are given by

C = C ⊗ Cγ(6), D̃ = Dγ(6) ⊗ Dγ(6). (A.14)

The O(6, 6) chirality operator is given by

Γ(12) = −γ(6) ⊗ γ(6) (A.15)

(and is manifestly independent of the sign of ǫg).
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Finally, one can identify the common O(6) subgroup of GL(6, R) and O(6) × O(6).

From this point of view θ1 and θ2 are spinors of the same Spin(6) group and χǫ is a

bispinor. It is natural to represent χǫ as

χǫ = 1
4θ1θ

t
2(1 − γ(6)) =

∑

p

1

8p!
χm1...mpγ

m1...mp , (A.16)

where the component forms are given by

χm1...mp = tr(χγmp...m1) ∈ ΛpF . (A.17)

The additional factor of 1−γ(6) is included so that the induced Clifford action on the forms

χp is that given in (A.9). In terms of this representation (A.16) the spinor bilinear is given

by

ψt
ǫ · χǫ = −8 tr(ψt

ǫχǫ) (A.18)

where in this representation one has

ψt
ǫ = γ(6)CψT

ǫ C−1, (A.19)

which follows directly from (A.14) and (A.16). Similarly given the expression (A.14) for

the intertwiner D̃, we have

χc̃
ǫ = D̃χ∗ = γ(6)Dχ∗

ǫD
−1γ−1

(6) . (A.20)

In terms of the component forms χc̃
p = χ∗

p.

Let us finish by considering chiral spinors χ±
ǫ ∈ S± in the representation (A.16). First

we note that in this case the Clifford action can be written as

(V ΣΓΣ)χ±
ǫ = 1

2 [xmγm, χ±
ǫ ]∓ + 1

2 [ξmγm, χ±
ǫ ]±. (A.21)

Next, given the chirality operator (A.15), we see that real chiral spinors can be written as

χ±
ǫ = ζ+ζ̄ ′± ± ζ−ζ̄ ′∓ , (A.22)

where ζ± and ζ ′± are chiral Spin(6) spinors. Note that as such they are eigenspinors of

1 − γ(6) and comparing with (A.16) we see this form is compatible with ζ± and ζ ′± being

sections of the two spin bundles S1 and S2 respectively. Note that the sign between the

two terms in (A.22) comes from the reality condition defined using (A.20).

In the main text we are interested in a pair of complex chiral O(6, 6) spinors given in

the representation (A.16) by

Φ+
0 = η1

+η̄2
+, Φ−

0 = η1
+η̄2

−. (A.23)

Note, that, in this case we have

(Φ+
0 )c̃ = D̃(Φ+

0 )∗ = η1
−η̄2

−, (Φ−
0 )c̃ = D̃(Φ−

0 )∗ = −η1
−η̄2

+. (A.24)

By a slight abuse of notation, in the main text we denote (Φ±
0 )c̃ by Φ̄±

0 . Note that we also

have

(Φ+
0 )t = −iη2

−η̄1
−, (Φ−

0 )t = iη2
+η̄1

−. (A.25)
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B. Generic truncation

In this appendix we discuss the general conditions on mode truncations of the infinite

tower of Kaluza-Klein states on M6. In particular, we give the conditions such that there

is a local special Kähler metric on the moduli space truncated modes, which is inherited

from the local special Kähler geometry of the untruncated theory. A special case of such a

truncation, is the expansion in terms of harmonic modes on a Calabi-Yau manifold.19

The section is divided as follows. We first recall the definition of (local) special Kähler

geometry following the approach of [71]. We then review how this geometry is realised in

the untruncated theory and finally derive the conditions for a special Kähler geometry on

the truncated theory.

B.1 Special Kähler geometry

There are many different ways to define a rigid or local special Kähler geometry. One

is as follows [71]. Let U be a 2d-dimensional Kähler manifold with Kähler form ω and

complex structure J . A rigid special Kähler structure on U is a flat torsion-free connection

∇ satisfying

∇iωjk = 0, ∇[iJ
k
j] = 0. (B.1)

The first condition is equivalent to the statement that one can find coordinates ui whose

transition functions are of the form

ui = Si
ju

′j + ai, (B.2)

where S ∈ Sp(2d, R) is a constant symplectic transformation and a ∈ R
2d. In these

coordinates ∇i = ∂i. The second condition means that locally one can introduce a vector

û = ûi∂i such that, in these coordinates,

J i
j = −∂j û

i. (B.3)

Furthermore since the metric gij = ωikJ
k
j is symmetric we have locally

ûi = −(ω−1)ij∂jK (B.4)

for some real function K. In addition, it is easy to see that K is actually the Kähler

potential.

One can introduce special complex coordinates as follows. Given the coordinates ui,

locally one can define a vector field u = ui∂i and hence a local holomorphic vector field

ζ = 1
2 (u + iû) . (B.5)

From (B.2) and (B.3) we see that ζ is unique up to a shift by a constant complex vector.

Furthermore

Krigid = iω(ζ, ζ̄). (B.6)

19A discussion of the truncation conditions in the particular case of an SU (3) structure also appeared

very recently in [50] and appears to be in agreement with the analysis given here.

– 41 –



J
H
E
P
0
4
(
2
0
0
7
)
1
0
1

By making a symplectic transformation one can always choose Darboux coordinates ui =

(xI , yI) with I = 1, . . . , d such that

ω = dxI ∧ dyI . (B.7)

In this basis one can write ζ as

ζ = ZI ∂

∂xI
−FI

∂

∂yI
. (B.8)

The functions ZI are special complex coordinates on the special Kähler manifold and the

holomorphic functions FI are locally given in terms of a prepotential F(Z), by FI =

∂F/∂ZI .

A local special Kähler manifold can be viewed as a quotient of a rigid special Kähler

manifold. Suppose U is a 2d + 2 dimensional rigid special Kähler manifold such that one

can find a globally defined holomorphic vector field ζ of the form (B.5) such that Im ζ is a

Killing vector field and the orbits of ζ define U as a C
∗ fibration over a base V . The space

V is then a special Kähler manifold and the metric induced on V by taking the quotient

by the C
∗ action is a local special Kähler metric. The special coordinates ZI become

projective special coordinates on V . The C
∗ symmetry implies that the prepotential F(Z)

is homogeneous of degree two. The Kähler potential on V is given by

K = − ln iω(ζ, ζ̄). (B.9)

The moduli space of Calabi-Yau manifolds is a product of two special geometries

spanned by the deformations of the Kähler form and the deformations of the complex

structure [72].

B.2 Truncation conditions

The untruncated theory. Let us now review how special Kähler manifolds appear in

the context of generalised geometry following [2 – 4] (see also [45] for a review). Let S±(E)

be the positive and negative chirality generalised spinor bundles discussed in section 2 and

S±
p (E) be the fibre at a point p ∈ M9,1. One then considers an open subset S±

p ⊂ S±
p (E)

of so-called stable spinors. These are the spinors with stabilizer group SU (3, 3). One finds

that U is an open orbit under O(6, 6).

Hitchin then shows that there is a natural local special Kähler metric on S±
p . The

construction is as follows. Since S±
p (E) is a vector space one can identify TS±

p with S±
p (E)

and define the symplectic structure ω in terms of the spinor bilinear (2.7), that is, for

ψ,χǫ ∈ S±
p (E) ≃ TS±

p ,

ω(ψǫ, χǫ) = ψt
ǫ · χǫ. (B.10)

One then chooses natural coordinates χi
ǫ which are just the components of the spinor

χǫ ∈ S±
p . Then by definition ∇iωjk = 0 with ∇i = ∂/∂χi

ǫ.

The complex structure is defined by the real function Krigid via (B.3) and (B.4). On

S±
p it is given by Hitchin function

Krigid = Hǫ(χǫ). (B.11)
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This is a particular Spin(6, 6) invariant homogeneous function of degree two. In the nota-

tion of [45] the holomorphic vector field ζ is given by

Φ±
ǫ = 1

2 (χǫ + iχ̂ǫ) (B.12)

where χ̂i
ǫ = −(ω−1)ij(∂Hǫ/∂χj

ǫ), and is precisely the pure spinor Φ+
ǫ or Φ−

ǫ discussed in

section 2 which was used to define an SU (3, 3) structure.

Finally, the homogeneity of Hǫ implies that χ̂ǫ is a Killing vector field. Furthermore

S±
p is a C

∗ fibration, where Φ±
ǫ generates the C

∗ action on the fibres. This implies that

the quotient S±
p /C

∗ is a local special Kähler manifold with Kähler potential

K = − lnHǫ. (B.13)

Note that this implies that the corresponding metric is actually independent of the choice

of volume form which defines the isomorphism between S± and Λeven/odd. These means

that the how analysis could actually be repeated for stable forms χ ∈ Λeven/odd. In this

case, the symplectic structure gets replaced by the Mukai pairing (2.7) and the Hitchin

function becomes a six-form

e−K = H = i
〈

Φ±, Φ̄±
〉

(B.14)

Crucially, the local special Kähler metric on Vp defined by (B.13) or (B.14), is re-

lated to the supergravity action. Specifically in the case of SU (3) structure it was shown

that the metrics on S±
p /C

∗ corresponding to the two pure spinors Φ± are related to the

corresponding kinetic terms in the rewriting of type II supergravity.

Defining the truncation. Now suppose that M9,1 = M3,1 × M6 so that F = TM6.

In analogy to keeping only the moduli of a Calabi-Yau manifold we would like to make

a truncation, keeping some finite dimensional subspace of SU (3, 3) structures Φ on E.

More formally let us start by defining a sub-bundle S± ∈ S±(E) of stable spinors (or

the equivalent space of stable odd or even forms). The truncation is then an embedding

map from some finite dimensional space U into the infinite dimensional space of sections

C∞(S±)

σ : U → C∞(S±). (B.15)

In the case of a Calabi-Yau manifold, U is the odd or even cohomology and σ identifies

harmonic forms with elements in U . For the truncation to be supersymmetric, we require

that the special Kähler geometry on the fibres S±
p induces a special Kähler metric on U .

The purpose of this section is to find the constraints on the map σ such that this is true.

The first requirement is that U is a complex manifold. We have already seen that there

is a natural complex structure on each fibre S±
p . Hence there is a complex structure J on

C∞(S±). This will descend to a complex structure on U if the embedding σ is holomorphic.

Specifically, recall that σ induces the usual push-forward map σ∗ : TU → TS± on vectors.

We then define the complex structure J on U by requiring it to be compatible with the

complex structure J on C∞(S±), that is σ∗J = J σ∗. Explicitly suppose ui are coordinates

on U . In general we can write the push-forward of a vector t ∈ TU as

t = ti∂i 7→ σ∗t = tiΣi(u) (B.16)
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where Σi(u) = ∂iσ form a basis20 for the image of TU in TS±. In the special case of a

Calabi-Yau manifold, Σi(u) are harmonic forms. The complex structure J is then related

to J by

JΣi = Jj
iΣj. (B.17)

In other words the image of Σi under J can still be expanded in the basis Σi. In the

context of a Calabi-Yau manifold that action of J corresponds to taking the Hodge dual.

The condition (B.17) then states that the Hodge dual of a harmonic form is itself harmonic.

We now turn to the symplectic structure on U . We have seen that the spinor bilinear

(or equivalently the Mukai pairing) defines a symplectic structure on each fibre Sp. We can

define a bilinear on C∞(TS) simply by integrating over M6. Using σ∗ we can then define

a bilinear ω on TU by

ω(s, t) =

∫

M6

〈

σ∗s, σ∗t
〉

. (B.18)

In components we have

ωij =

∫

M6

〈

Σi,Σj

〉

. (B.19)

To be a symplectic structure we require that ω is non-degenerate. Using the Kähler struc-

ture on Sp, it is then by construction compatible with J .

The next requirement is that (ω, J) is special Kähler. This means first that we can

choose coordinate ui such that ∂iωjk = 0 or equivalently
∫

M6

〈

Σj, ∂iΣk

〉

= 0. (B.20)

Again, the special Kähler structure on Sp then implies that ∂[iJ
k
j] = 0 and hence there is

a rigid special Kähler metric on U .

Finally, of course, we actually want a local special Kähler metric, and hence some

natural C
∗ action on U . Again, we have such an action on Sp generated by the holomorphic

vector Φ and hence a C
∗ action on C∞(S). Thus the natural requirement is that this induces

a C
∗ action on U . In other words the holomorphic vector ζ ∈ TU of the form (B.5) which

defines the rigid special Kähler structure on U satisfies σ∗ζ = Φ. This means that, on a

coordinate patch ui the map σ is realised by

ui 7→ uiΣi. (B.21)

Since we also have Σi = ∂iσ this requires that ui∂jΣi = 0 or equivalently

ui∂iΣj = 0, (B.22)

that is, the basis forms Σi are homogeneous of degree zero. If this is satisfied, then there

is a local special Kähler metric on V = U/C
∗. Furthermore, it is easy to show that the

Kähler potential on V is given by

K = − ln

∫

M6

H = − ln i

∫

M6

〈

Φ±, Φ̄±
〉

(B.23)

20In the main text, we use the notation Σ+

Â
for the basis of even forms in TS

+, and Σ−

Î
for the basis of

odd forms in TS
−.
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where H is the Hitchin function defined using the Mukai pairing.

Finally, it is convenient to rewrite these expressions in terms of Darboux coordinates

ui = (xI , yI) with I = 0, 1, . . . , d such that ω = dxI ∧ dyI . Distinguishing between the odd

and even cases we have the corresponding bases

Σ+ = {ωA, ω̃B}, Σ− = {αI , β
J} (B.24)

such that ∫

M6

〈

αI , β
J
〉

= δI
J , (B.25)

and
∫

M6

〈

αI , αJ

〉

=
∫

M6

〈

βI , βJ
〉

= 0, together with

∫

M6

〈

ωA, ω̃B
〉

= δA
B , (B.26)

and
∫

M6

〈

ωA, ωB

〉

=
∫

M6

〈

ω̃A, ω̃B
〉

= 0.

We can then introduce holomorphic coordinates ZI (or XA) and a prepotential F (or

F ) such that

Φ+ = XIωA − FAω̃A,

Φ− = ZIαI −FIβ
I .

(B.27)
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